Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy the equation
[tex]\[ \left(\begin{array}{cc}-1 & 0 \\ 0 & -2\end{array}\right)\binom{x}{y}=\binom{-2}{4}, \][/tex]
we need to solve the matrix equation given by:
[tex]\[ \left(\begin{array}{cc}-1 & 0 \\ 0 & -2\end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} -2 \\ 4 \end{array}\right). \][/tex]
This results in the following system of linear equations:
1. [tex]\(-1 \cdot x + 0 \cdot y = -2\)[/tex]
2. [tex]\(0 \cdot x - 2 \cdot y = 4\)[/tex]
We can simplify these equations:
1. [tex]\(-x = -2\)[/tex]
2. [tex]\(-2y = 4\)[/tex]
Let's solve these equations one by one.
For the first equation:
[tex]\[ -x = -2 \][/tex]
Multiplying both sides by [tex]\(-1\)[/tex]:
[tex]\[ x = 2 \][/tex]
For the second equation:
[tex]\[ -2y = 4 \][/tex]
Dividing both sides by [tex]\(-2\)[/tex]:
[tex]\[ y = -2 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ \binom{x}{y} = \binom{2}{-2}. \][/tex]
So, the matrix [tex]\( \binom{x}{y} \)[/tex] is:
[tex]\[ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}. \][/tex]
[tex]\[ \left(\begin{array}{cc}-1 & 0 \\ 0 & -2\end{array}\right)\binom{x}{y}=\binom{-2}{4}, \][/tex]
we need to solve the matrix equation given by:
[tex]\[ \left(\begin{array}{cc}-1 & 0 \\ 0 & -2\end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} -2 \\ 4 \end{array}\right). \][/tex]
This results in the following system of linear equations:
1. [tex]\(-1 \cdot x + 0 \cdot y = -2\)[/tex]
2. [tex]\(0 \cdot x - 2 \cdot y = 4\)[/tex]
We can simplify these equations:
1. [tex]\(-x = -2\)[/tex]
2. [tex]\(-2y = 4\)[/tex]
Let's solve these equations one by one.
For the first equation:
[tex]\[ -x = -2 \][/tex]
Multiplying both sides by [tex]\(-1\)[/tex]:
[tex]\[ x = 2 \][/tex]
For the second equation:
[tex]\[ -2y = 4 \][/tex]
Dividing both sides by [tex]\(-2\)[/tex]:
[tex]\[ y = -2 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ \binom{x}{y} = \binom{2}{-2}. \][/tex]
So, the matrix [tex]\( \binom{x}{y} \)[/tex] is:
[tex]\[ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}. \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.