Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

What is the [tex]$x$[/tex]-coordinate of the point that divides the directed line segment from [tex]$J$[/tex] to [tex]$K$[/tex] into a ratio of [tex]$2: 5$[/tex]?

[tex]\[
x = \left(\frac{m}{m+n}\right)(x_2 - x_1) + x_1
\][/tex]

A. [tex]$-4$[/tex]
B. [tex]$-2$[/tex]
C. [tex]$2$[/tex]
D. [tex]$4$[/tex]

Sagot :

To find the [tex]\( x \)[/tex]-coordinate of the point that divides the directed line segment from [tex]\( J \)[/tex] to [tex]\( K \)[/tex] in the ratio [tex]\( 2:5 \)[/tex], we will use the section formula for internal division.

1. Identify the [tex]\( x \)[/tex]-coordinates of points [tex]\( J \)[/tex] and [tex]\( K \)[/tex]:
- Let [tex]\( x_1 \)[/tex] be the [tex]\( x \)[/tex]-coordinate of [tex]\( J \)[/tex], which is [tex]\( -4 \)[/tex].
- Let [tex]\( x_2 \)[/tex] be the [tex]\( x \)[/tex]-coordinate of [tex]\( K \)[/tex], which is [tex]\( 4 \)[/tex].

2. Identify the given ratio:
- The ratio [tex]\( m:n \)[/tex] is given as [tex]\( 2:5 \)[/tex], where [tex]\( m = 2 \)[/tex] and [tex]\( n = 5 \)[/tex].

3. Apply the section formula:
[tex]\[ x = \left( \frac{m}{m+n} \right) (x_2 - x_1) + x_1 \][/tex]
Plugging in the values:
[tex]\[ x = \left( \frac{2}{2+5} \right) (4 - (-4)) + (-4) \][/tex]

4. Simplify the terms step by step:
- Calculate the sum of the ratio parts:
[tex]\[ m + n = 2 + 5 = 7 \][/tex]
- Calculate the difference between [tex]\( x_2 \)[/tex] and [tex]\( x_1 \)[/tex]:
[tex]\[ x_2 - x_1 = 4 - (-4) = 4 + 4 = 8 \][/tex]
- Substitute these into the formula:
[tex]\[ x = \left( \frac{2}{7} \right) \times 8 + (-4) \][/tex]

5. Perform the multiplication:
[tex]\[ \left( \frac{2}{7} \right) \times 8 = \frac{16}{7} \][/tex]

6. Finally, add this value to [tex]\( x_1 \)[/tex]:
[tex]\[ x = \frac{16}{7} - 4 \][/tex]
Convert [tex]\( -4 \)[/tex] to a fraction with the same denominator:
[tex]\[ -4 = -\frac{28}{7} \][/tex]
Thus, we have:
[tex]\[ x = \frac{16}{7} - \frac{28}{7} = \frac{16 - 28}{7} = \frac{-12}{7} \approx -1.71 \][/tex]

Therefore, the [tex]\( x \)[/tex]-coordinate of the point that divides the directed line segment from [tex]\( J \)[/tex] to [tex]\( K \)[/tex] in the ratio [tex]\( 2:5 \)[/tex] is approximately [tex]\( -1.71 \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.