Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's break down the problem step by step to determine which equation Kim can use to find [tex]\( x \)[/tex], the length of the pole.
1. Understand the context:
- The pole casts a 12-foot shadow.
- The angle of elevation of the sun is [tex]\( 40^\circ \)[/tex].
2. Set up the problem:
- The pole, its shadow, and the angle of elevation create a right-angled triangle.
- In this triangle:
- The height of the pole [tex]\( x \)[/tex] is the side opposite the angle of elevation.
- The shadow is the side adjacent to the angle of elevation.
- The angle of elevation is [tex]\( 40^\circ \)[/tex].
3. Use the appropriate trigonometric function:
- The tangent function relates the opposite side and the adjacent side in a right-angled triangle:
[tex]\[ \tan(\text{angle}) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
- For our given angle of elevation [tex]\( 40^\circ \)[/tex]:
[tex]\[ \tan(40^\circ) = \frac{x}{12} \][/tex]
4. Solve for [tex]\( x \)[/tex]:
- Multiply both sides by 12 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = 12 \cdot \tan(40^\circ) \][/tex]
5. Evaluate the expression to find [tex]\( x \)[/tex]:
- After calculating [tex]\( 12 \cdot \tan(40^\circ) \)[/tex], we get a numerical result of approximately 10.0692.
6. Identify the corresponding equation:
- Among the given choices:
- [tex]\(\frac{\sin 40}{x}=\frac{\sin 60}{12}\)[/tex]
- [tex]\(\frac{\sin 40}{12}=\frac{\sin 60}{x}\)[/tex]
- [tex]\(\frac{\sin 60}{x}=\frac{\sin 80}{12}\)[/tex]
- None of these choices directly match our initial equation using tangent. However, considering the relationship setup and the solving process, the correct equation from the choice is:
- [tex]\[ \frac{\tan(40^\circ)}{1} = \frac{x}{12} \][/tex]
- Then rearrange it to:
- [tex]\[ x = \tan(40^\circ) \cdot 12 \][/tex]
After following these steps, the appropriate choice for Kim to use to find the height of the pole, [tex]\( x \)[/tex], would be the equation incorporating tangent:
[tex]\[ \text{tan}(40^\circ) \cdot 12 = x \][/tex]
Therefore, this corresponds to the correct interpretation which led us to choosing the second numeric confirmation. This calculation yields the correct height, [tex]\( x \)[/tex], of approximately 10.0692 feet.
1. Understand the context:
- The pole casts a 12-foot shadow.
- The angle of elevation of the sun is [tex]\( 40^\circ \)[/tex].
2. Set up the problem:
- The pole, its shadow, and the angle of elevation create a right-angled triangle.
- In this triangle:
- The height of the pole [tex]\( x \)[/tex] is the side opposite the angle of elevation.
- The shadow is the side adjacent to the angle of elevation.
- The angle of elevation is [tex]\( 40^\circ \)[/tex].
3. Use the appropriate trigonometric function:
- The tangent function relates the opposite side and the adjacent side in a right-angled triangle:
[tex]\[ \tan(\text{angle}) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
- For our given angle of elevation [tex]\( 40^\circ \)[/tex]:
[tex]\[ \tan(40^\circ) = \frac{x}{12} \][/tex]
4. Solve for [tex]\( x \)[/tex]:
- Multiply both sides by 12 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = 12 \cdot \tan(40^\circ) \][/tex]
5. Evaluate the expression to find [tex]\( x \)[/tex]:
- After calculating [tex]\( 12 \cdot \tan(40^\circ) \)[/tex], we get a numerical result of approximately 10.0692.
6. Identify the corresponding equation:
- Among the given choices:
- [tex]\(\frac{\sin 40}{x}=\frac{\sin 60}{12}\)[/tex]
- [tex]\(\frac{\sin 40}{12}=\frac{\sin 60}{x}\)[/tex]
- [tex]\(\frac{\sin 60}{x}=\frac{\sin 80}{12}\)[/tex]
- None of these choices directly match our initial equation using tangent. However, considering the relationship setup and the solving process, the correct equation from the choice is:
- [tex]\[ \frac{\tan(40^\circ)}{1} = \frac{x}{12} \][/tex]
- Then rearrange it to:
- [tex]\[ x = \tan(40^\circ) \cdot 12 \][/tex]
After following these steps, the appropriate choice for Kim to use to find the height of the pole, [tex]\( x \)[/tex], would be the equation incorporating tangent:
[tex]\[ \text{tan}(40^\circ) \cdot 12 = x \][/tex]
Therefore, this corresponds to the correct interpretation which led us to choosing the second numeric confirmation. This calculation yields the correct height, [tex]\( x \)[/tex], of approximately 10.0692 feet.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.