Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the angle [tex]\(\theta\)[/tex] given that [tex]\(\sin \theta = \frac{11}{17}\)[/tex] and [tex]\(90^\circ < \theta < 180^\circ\)[/tex], follow these steps:
1. Find the sine of the angle:
[tex]\[ \sin \theta = \frac{11}{17} \approx 0.6471 \][/tex]
2. Calculate the reference angle:
Since [tex]\(90^\circ < \theta < 180^\circ\)[/tex], [tex]\(\theta\)[/tex] is in the second quadrant where [tex]\(\sin\)[/tex] is positive. The reference angle can be found using the inverse sine function (arcsine):
[tex]\[ \theta_{\text{ref}} = \sin^{-1}(0.6471) \][/tex]
Without a calculator, this step would typically be done using tables or inverse function properties, but for this detailed solution, let's directly state the value:
[tex]\[ \theta_{\text{ref}} \approx 40.3^\circ \][/tex]
3. Adjust for the second quadrant:
Since the angle is in the second quadrant, we have:
[tex]\[ \theta = 180^\circ - \theta_{\text{ref}} \][/tex]
Given [tex]\(\theta_{\text{ref}} \approx 40.3^\circ\)[/tex],
[tex]\[ \theta \approx 180^\circ - 40.3^\circ = 139.7^\circ \][/tex]
4. Convert the degree measure to radians (at least 4 decimal places):
We know [tex]\(180^\circ\)[/tex] corresponds to [tex]\(\pi\)[/tex] radians. So, to convert [tex]\(139.7^\circ\)[/tex] to radians:
[tex]\[ \theta_{\text{radians}} = 139.7^\circ \times \frac{\pi}{180^\circ} \][/tex]
Plugging in the numbers:
[tex]\[ \theta_{\text{radians}} \approx 139.7 \times \frac{\pi}{180} \approx 2.4379 \, \text{radians} \][/tex]
To summarize, the angle [tex]\(\theta\)[/tex]:
- In degree measure (to 1 decimal place): [tex]\(\theta \approx 139.7^\circ\)[/tex]
- In radian measure (to at least 4 decimal places): [tex]\(\theta \approx 2.4379\)[/tex] radians
1. Find the sine of the angle:
[tex]\[ \sin \theta = \frac{11}{17} \approx 0.6471 \][/tex]
2. Calculate the reference angle:
Since [tex]\(90^\circ < \theta < 180^\circ\)[/tex], [tex]\(\theta\)[/tex] is in the second quadrant where [tex]\(\sin\)[/tex] is positive. The reference angle can be found using the inverse sine function (arcsine):
[tex]\[ \theta_{\text{ref}} = \sin^{-1}(0.6471) \][/tex]
Without a calculator, this step would typically be done using tables or inverse function properties, but for this detailed solution, let's directly state the value:
[tex]\[ \theta_{\text{ref}} \approx 40.3^\circ \][/tex]
3. Adjust for the second quadrant:
Since the angle is in the second quadrant, we have:
[tex]\[ \theta = 180^\circ - \theta_{\text{ref}} \][/tex]
Given [tex]\(\theta_{\text{ref}} \approx 40.3^\circ\)[/tex],
[tex]\[ \theta \approx 180^\circ - 40.3^\circ = 139.7^\circ \][/tex]
4. Convert the degree measure to radians (at least 4 decimal places):
We know [tex]\(180^\circ\)[/tex] corresponds to [tex]\(\pi\)[/tex] radians. So, to convert [tex]\(139.7^\circ\)[/tex] to radians:
[tex]\[ \theta_{\text{radians}} = 139.7^\circ \times \frac{\pi}{180^\circ} \][/tex]
Plugging in the numbers:
[tex]\[ \theta_{\text{radians}} \approx 139.7 \times \frac{\pi}{180} \approx 2.4379 \, \text{radians} \][/tex]
To summarize, the angle [tex]\(\theta\)[/tex]:
- In degree measure (to 1 decimal place): [tex]\(\theta \approx 139.7^\circ\)[/tex]
- In radian measure (to at least 4 decimal places): [tex]\(\theta \approx 2.4379\)[/tex] radians
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.