Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the angle [tex]\(\theta\)[/tex] given that [tex]\(\sin \theta = \frac{11}{17}\)[/tex] and [tex]\(90^\circ < \theta < 180^\circ\)[/tex], follow these steps:
1. Find the sine of the angle:
[tex]\[ \sin \theta = \frac{11}{17} \approx 0.6471 \][/tex]
2. Calculate the reference angle:
Since [tex]\(90^\circ < \theta < 180^\circ\)[/tex], [tex]\(\theta\)[/tex] is in the second quadrant where [tex]\(\sin\)[/tex] is positive. The reference angle can be found using the inverse sine function (arcsine):
[tex]\[ \theta_{\text{ref}} = \sin^{-1}(0.6471) \][/tex]
Without a calculator, this step would typically be done using tables or inverse function properties, but for this detailed solution, let's directly state the value:
[tex]\[ \theta_{\text{ref}} \approx 40.3^\circ \][/tex]
3. Adjust for the second quadrant:
Since the angle is in the second quadrant, we have:
[tex]\[ \theta = 180^\circ - \theta_{\text{ref}} \][/tex]
Given [tex]\(\theta_{\text{ref}} \approx 40.3^\circ\)[/tex],
[tex]\[ \theta \approx 180^\circ - 40.3^\circ = 139.7^\circ \][/tex]
4. Convert the degree measure to radians (at least 4 decimal places):
We know [tex]\(180^\circ\)[/tex] corresponds to [tex]\(\pi\)[/tex] radians. So, to convert [tex]\(139.7^\circ\)[/tex] to radians:
[tex]\[ \theta_{\text{radians}} = 139.7^\circ \times \frac{\pi}{180^\circ} \][/tex]
Plugging in the numbers:
[tex]\[ \theta_{\text{radians}} \approx 139.7 \times \frac{\pi}{180} \approx 2.4379 \, \text{radians} \][/tex]
To summarize, the angle [tex]\(\theta\)[/tex]:
- In degree measure (to 1 decimal place): [tex]\(\theta \approx 139.7^\circ\)[/tex]
- In radian measure (to at least 4 decimal places): [tex]\(\theta \approx 2.4379\)[/tex] radians
1. Find the sine of the angle:
[tex]\[ \sin \theta = \frac{11}{17} \approx 0.6471 \][/tex]
2. Calculate the reference angle:
Since [tex]\(90^\circ < \theta < 180^\circ\)[/tex], [tex]\(\theta\)[/tex] is in the second quadrant where [tex]\(\sin\)[/tex] is positive. The reference angle can be found using the inverse sine function (arcsine):
[tex]\[ \theta_{\text{ref}} = \sin^{-1}(0.6471) \][/tex]
Without a calculator, this step would typically be done using tables or inverse function properties, but for this detailed solution, let's directly state the value:
[tex]\[ \theta_{\text{ref}} \approx 40.3^\circ \][/tex]
3. Adjust for the second quadrant:
Since the angle is in the second quadrant, we have:
[tex]\[ \theta = 180^\circ - \theta_{\text{ref}} \][/tex]
Given [tex]\(\theta_{\text{ref}} \approx 40.3^\circ\)[/tex],
[tex]\[ \theta \approx 180^\circ - 40.3^\circ = 139.7^\circ \][/tex]
4. Convert the degree measure to radians (at least 4 decimal places):
We know [tex]\(180^\circ\)[/tex] corresponds to [tex]\(\pi\)[/tex] radians. So, to convert [tex]\(139.7^\circ\)[/tex] to radians:
[tex]\[ \theta_{\text{radians}} = 139.7^\circ \times \frac{\pi}{180^\circ} \][/tex]
Plugging in the numbers:
[tex]\[ \theta_{\text{radians}} \approx 139.7 \times \frac{\pi}{180} \approx 2.4379 \, \text{radians} \][/tex]
To summarize, the angle [tex]\(\theta\)[/tex]:
- In degree measure (to 1 decimal place): [tex]\(\theta \approx 139.7^\circ\)[/tex]
- In radian measure (to at least 4 decimal places): [tex]\(\theta \approx 2.4379\)[/tex] radians
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.