Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To rewrite the absolute value function [tex]\( f(x) = |x+3| \)[/tex] as a piecewise function, we need to consider the definition of the absolute value and how it affects the expression based on the input value of [tex]\(x\)[/tex].
The absolute value function [tex]\( |x+3| \)[/tex] has different expressions based on whether [tex]\( x+3 \)[/tex] is non-negative or negative:
1. When [tex]\( x + 3 \)[/tex] is non-negative (i.e., [tex]\( x + 3 \geq 0 \)[/tex]), the absolute value function [tex]\( |x+3| \)[/tex] is simply [tex]\( x + 3 \)[/tex].
2. When [tex]\( x + 3 \)[/tex] is negative (i.e., [tex]\( x + 3 < 0 \)[/tex]), the absolute value function [tex]\( |x+3| \)[/tex] is [tex]\( -(x + 3) \)[/tex], which simplifies to [tex]\( -x - 3 \)[/tex].
To determine the conditions under which each expression applies:
- [tex]\( x + 3 \geq 0 \)[/tex] simplifies to [tex]\( x \geq -3 \)[/tex]
- [tex]\( x + 3 < 0 \)[/tex] simplifies to [tex]\( x < -3 \)[/tex]
Given these conditions, we can write the piecewise function as follows:
[tex]\[ f(x) = \left\{\begin{array}{ll} x + 3, & \text{if } x \geq -3 \\ -x - 3, & \text{if } x < -3 \\ \end{array}\right. \][/tex]
The absolute value function [tex]\( |x+3| \)[/tex] has different expressions based on whether [tex]\( x+3 \)[/tex] is non-negative or negative:
1. When [tex]\( x + 3 \)[/tex] is non-negative (i.e., [tex]\( x + 3 \geq 0 \)[/tex]), the absolute value function [tex]\( |x+3| \)[/tex] is simply [tex]\( x + 3 \)[/tex].
2. When [tex]\( x + 3 \)[/tex] is negative (i.e., [tex]\( x + 3 < 0 \)[/tex]), the absolute value function [tex]\( |x+3| \)[/tex] is [tex]\( -(x + 3) \)[/tex], which simplifies to [tex]\( -x - 3 \)[/tex].
To determine the conditions under which each expression applies:
- [tex]\( x + 3 \geq 0 \)[/tex] simplifies to [tex]\( x \geq -3 \)[/tex]
- [tex]\( x + 3 < 0 \)[/tex] simplifies to [tex]\( x < -3 \)[/tex]
Given these conditions, we can write the piecewise function as follows:
[tex]\[ f(x) = \left\{\begin{array}{ll} x + 3, & \text{if } x \geq -3 \\ -x - 3, & \text{if } x < -3 \\ \end{array}\right. \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.