Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To factorize the expression [tex]\( a^3 + 2\sqrt{2} b^3 \)[/tex], we need to express it in a product of polynomials if possible.
### Step-by-Step Solution:
1. Identify the Structure:
The given expression is [tex]\( a^3 + 2\sqrt{2} b^3 \)[/tex]. Notice that it resembles a sum of cubes, but with a slight variation due to the coefficient [tex]\( 2\sqrt{2} \)[/tex].
2. Recall the Factorization Formula for Sum of Cubes:
The standard factorization for a sum of cubes [tex]\( x^3 + y^3 \)[/tex] is:
[tex]\[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \][/tex]
We need to apply this to our expression by making it fit this form. In this case, our expression can be seen in the form [tex]\( a^3 + (2\sqrt{2}b)^3 \)[/tex].
3. Rewrite the Expression in Sum of Cubes Format:
We have:
[tex]\[ a^3 + (2\sqrt{2} b)^3 \][/tex]
Here, [tex]\( x = a \)[/tex] and [tex]\( y = 2\sqrt{2} b \)[/tex].
4. Apply the Sum of Cubes Formula:
Using the sum of cubes formula, substitute [tex]\( x = a \)[/tex] and [tex]\( y = 2\sqrt{2} b \)[/tex]:
[tex]\[ a^3 + (2\sqrt{2} b)^3 = (a + 2\sqrt{2} b)\left[ a^2 - a(2\sqrt{2} b) + (2\sqrt{2} b)^2 \right] \][/tex]
5. Simplify the Expression Inside the Brackets:
[tex]\[ = (a + 2\sqrt{2} b) \left[ a^2 - 2\sqrt{2} ab + (2\sqrt{2} b)^2 \right] \][/tex]
Calculate [tex]\( (2\sqrt{2} b)^2 \)[/tex]:
[tex]\[ (2\sqrt{2} b)^2 = 4 \times 2 \times b^2 = 8 b^2 \][/tex]
Thus, the expression inside the brackets becomes:
[tex]\[ a^2 - 2\sqrt{2} ab + 8b^2 \][/tex]
6. Combine Results:
Therefore, the factorized form is:
[tex]\[ a^3 + 2\sqrt{2} b^3 = (a + 2\sqrt{2} b) (a^2 - 2\sqrt{2} ab + 8 b^2) \][/tex]
### Conclusion:
The factorized form of the expression [tex]\( a^3 + 2\sqrt{2} b^3 \)[/tex] is:
[tex]\[ a^3 + 2 \sqrt{2} b^3 = (a + 2\sqrt{2} b) (a^2 - 2\sqrt{2} ab + 8 b^2) \][/tex]
### Step-by-Step Solution:
1. Identify the Structure:
The given expression is [tex]\( a^3 + 2\sqrt{2} b^3 \)[/tex]. Notice that it resembles a sum of cubes, but with a slight variation due to the coefficient [tex]\( 2\sqrt{2} \)[/tex].
2. Recall the Factorization Formula for Sum of Cubes:
The standard factorization for a sum of cubes [tex]\( x^3 + y^3 \)[/tex] is:
[tex]\[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \][/tex]
We need to apply this to our expression by making it fit this form. In this case, our expression can be seen in the form [tex]\( a^3 + (2\sqrt{2}b)^3 \)[/tex].
3. Rewrite the Expression in Sum of Cubes Format:
We have:
[tex]\[ a^3 + (2\sqrt{2} b)^3 \][/tex]
Here, [tex]\( x = a \)[/tex] and [tex]\( y = 2\sqrt{2} b \)[/tex].
4. Apply the Sum of Cubes Formula:
Using the sum of cubes formula, substitute [tex]\( x = a \)[/tex] and [tex]\( y = 2\sqrt{2} b \)[/tex]:
[tex]\[ a^3 + (2\sqrt{2} b)^3 = (a + 2\sqrt{2} b)\left[ a^2 - a(2\sqrt{2} b) + (2\sqrt{2} b)^2 \right] \][/tex]
5. Simplify the Expression Inside the Brackets:
[tex]\[ = (a + 2\sqrt{2} b) \left[ a^2 - 2\sqrt{2} ab + (2\sqrt{2} b)^2 \right] \][/tex]
Calculate [tex]\( (2\sqrt{2} b)^2 \)[/tex]:
[tex]\[ (2\sqrt{2} b)^2 = 4 \times 2 \times b^2 = 8 b^2 \][/tex]
Thus, the expression inside the brackets becomes:
[tex]\[ a^2 - 2\sqrt{2} ab + 8b^2 \][/tex]
6. Combine Results:
Therefore, the factorized form is:
[tex]\[ a^3 + 2\sqrt{2} b^3 = (a + 2\sqrt{2} b) (a^2 - 2\sqrt{2} ab + 8 b^2) \][/tex]
### Conclusion:
The factorized form of the expression [tex]\( a^3 + 2\sqrt{2} b^3 \)[/tex] is:
[tex]\[ a^3 + 2 \sqrt{2} b^3 = (a + 2\sqrt{2} b) (a^2 - 2\sqrt{2} ab + 8 b^2) \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.