Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To factorize the expression [tex]\( a^3 + 2\sqrt{2} b^3 \)[/tex], we need to express it in a product of polynomials if possible.
### Step-by-Step Solution:
1. Identify the Structure:
The given expression is [tex]\( a^3 + 2\sqrt{2} b^3 \)[/tex]. Notice that it resembles a sum of cubes, but with a slight variation due to the coefficient [tex]\( 2\sqrt{2} \)[/tex].
2. Recall the Factorization Formula for Sum of Cubes:
The standard factorization for a sum of cubes [tex]\( x^3 + y^3 \)[/tex] is:
[tex]\[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \][/tex]
We need to apply this to our expression by making it fit this form. In this case, our expression can be seen in the form [tex]\( a^3 + (2\sqrt{2}b)^3 \)[/tex].
3. Rewrite the Expression in Sum of Cubes Format:
We have:
[tex]\[ a^3 + (2\sqrt{2} b)^3 \][/tex]
Here, [tex]\( x = a \)[/tex] and [tex]\( y = 2\sqrt{2} b \)[/tex].
4. Apply the Sum of Cubes Formula:
Using the sum of cubes formula, substitute [tex]\( x = a \)[/tex] and [tex]\( y = 2\sqrt{2} b \)[/tex]:
[tex]\[ a^3 + (2\sqrt{2} b)^3 = (a + 2\sqrt{2} b)\left[ a^2 - a(2\sqrt{2} b) + (2\sqrt{2} b)^2 \right] \][/tex]
5. Simplify the Expression Inside the Brackets:
[tex]\[ = (a + 2\sqrt{2} b) \left[ a^2 - 2\sqrt{2} ab + (2\sqrt{2} b)^2 \right] \][/tex]
Calculate [tex]\( (2\sqrt{2} b)^2 \)[/tex]:
[tex]\[ (2\sqrt{2} b)^2 = 4 \times 2 \times b^2 = 8 b^2 \][/tex]
Thus, the expression inside the brackets becomes:
[tex]\[ a^2 - 2\sqrt{2} ab + 8b^2 \][/tex]
6. Combine Results:
Therefore, the factorized form is:
[tex]\[ a^3 + 2\sqrt{2} b^3 = (a + 2\sqrt{2} b) (a^2 - 2\sqrt{2} ab + 8 b^2) \][/tex]
### Conclusion:
The factorized form of the expression [tex]\( a^3 + 2\sqrt{2} b^3 \)[/tex] is:
[tex]\[ a^3 + 2 \sqrt{2} b^3 = (a + 2\sqrt{2} b) (a^2 - 2\sqrt{2} ab + 8 b^2) \][/tex]
### Step-by-Step Solution:
1. Identify the Structure:
The given expression is [tex]\( a^3 + 2\sqrt{2} b^3 \)[/tex]. Notice that it resembles a sum of cubes, but with a slight variation due to the coefficient [tex]\( 2\sqrt{2} \)[/tex].
2. Recall the Factorization Formula for Sum of Cubes:
The standard factorization for a sum of cubes [tex]\( x^3 + y^3 \)[/tex] is:
[tex]\[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \][/tex]
We need to apply this to our expression by making it fit this form. In this case, our expression can be seen in the form [tex]\( a^3 + (2\sqrt{2}b)^3 \)[/tex].
3. Rewrite the Expression in Sum of Cubes Format:
We have:
[tex]\[ a^3 + (2\sqrt{2} b)^3 \][/tex]
Here, [tex]\( x = a \)[/tex] and [tex]\( y = 2\sqrt{2} b \)[/tex].
4. Apply the Sum of Cubes Formula:
Using the sum of cubes formula, substitute [tex]\( x = a \)[/tex] and [tex]\( y = 2\sqrt{2} b \)[/tex]:
[tex]\[ a^3 + (2\sqrt{2} b)^3 = (a + 2\sqrt{2} b)\left[ a^2 - a(2\sqrt{2} b) + (2\sqrt{2} b)^2 \right] \][/tex]
5. Simplify the Expression Inside the Brackets:
[tex]\[ = (a + 2\sqrt{2} b) \left[ a^2 - 2\sqrt{2} ab + (2\sqrt{2} b)^2 \right] \][/tex]
Calculate [tex]\( (2\sqrt{2} b)^2 \)[/tex]:
[tex]\[ (2\sqrt{2} b)^2 = 4 \times 2 \times b^2 = 8 b^2 \][/tex]
Thus, the expression inside the brackets becomes:
[tex]\[ a^2 - 2\sqrt{2} ab + 8b^2 \][/tex]
6. Combine Results:
Therefore, the factorized form is:
[tex]\[ a^3 + 2\sqrt{2} b^3 = (a + 2\sqrt{2} b) (a^2 - 2\sqrt{2} ab + 8 b^2) \][/tex]
### Conclusion:
The factorized form of the expression [tex]\( a^3 + 2\sqrt{2} b^3 \)[/tex] is:
[tex]\[ a^3 + 2 \sqrt{2} b^3 = (a + 2\sqrt{2} b) (a^2 - 2\sqrt{2} ab + 8 b^2) \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.