Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure! Let's solve this step-by-step.
1. Understanding the Problem:
- The sum of the diagonals of the rectangle is given as 26 cm.
- One of the sides of the rectangle is given as 5 cm.
- We need to find the sum of the lengths of the other three sides of the rectangle.
2. Find the Length of one diagonal:
Since the sum of the diagonals is 26 cm and the diagonals of a rectangle are equal in length, each diagonal would be:
[tex]\[ \text{Length of one diagonal} = \frac{26}{2} = 13 \text{ cm} \][/tex]
3. Using the Pythagorean theorem:
The diagonals of a rectangle divide it into two right-angled triangles. Using the Pythagorean theorem in one of these triangles, we can find the length of the other side. Let's denote the unknown side as [tex]\( b \)[/tex].
The relationship is given by:
[tex]\[ \text{Diagonal}^2 = \text{side}_a^2 + \text{side}_b^2 \][/tex]
Substituting the known values:
[tex]\[ 13^2 = 5^2 + b^2 \][/tex]
[tex]\[ 169 = 25 + b^2 \][/tex]
Now, solving for [tex]\( b \)[/tex]:
[tex]\[ b^2 = 169 - 25 = 144 \][/tex]
[tex]\[ b = \sqrt{144} = 12 \text{ cm} \][/tex]
4. Calculate the sum of the lengths of the other three sides:
- Sum of the other three sides of the rectangle includes:
- The given side [tex]\( a = 5 \text{ cm} \)[/tex]
- The unknown side [tex]\( b = 12 \text{ cm} \)[/tex]
- Another instance of side [tex]\( a = 5 \text{ cm} \)[/tex] and side [tex]\( b = 12 \text{ cm} \)[/tex]
So, the sum is:
[tex]\[ \text{Sum} = \text{side}_a + \text{side}_b + \text{side}_b = 5 + 5 + 12 + 12 = 34 \text{ cm} \][/tex]
Therefore, the sum of the lengths of the other three sides of the rectangle is 34 cm.
1. Understanding the Problem:
- The sum of the diagonals of the rectangle is given as 26 cm.
- One of the sides of the rectangle is given as 5 cm.
- We need to find the sum of the lengths of the other three sides of the rectangle.
2. Find the Length of one diagonal:
Since the sum of the diagonals is 26 cm and the diagonals of a rectangle are equal in length, each diagonal would be:
[tex]\[ \text{Length of one diagonal} = \frac{26}{2} = 13 \text{ cm} \][/tex]
3. Using the Pythagorean theorem:
The diagonals of a rectangle divide it into two right-angled triangles. Using the Pythagorean theorem in one of these triangles, we can find the length of the other side. Let's denote the unknown side as [tex]\( b \)[/tex].
The relationship is given by:
[tex]\[ \text{Diagonal}^2 = \text{side}_a^2 + \text{side}_b^2 \][/tex]
Substituting the known values:
[tex]\[ 13^2 = 5^2 + b^2 \][/tex]
[tex]\[ 169 = 25 + b^2 \][/tex]
Now, solving for [tex]\( b \)[/tex]:
[tex]\[ b^2 = 169 - 25 = 144 \][/tex]
[tex]\[ b = \sqrt{144} = 12 \text{ cm} \][/tex]
4. Calculate the sum of the lengths of the other three sides:
- Sum of the other three sides of the rectangle includes:
- The given side [tex]\( a = 5 \text{ cm} \)[/tex]
- The unknown side [tex]\( b = 12 \text{ cm} \)[/tex]
- Another instance of side [tex]\( a = 5 \text{ cm} \)[/tex] and side [tex]\( b = 12 \text{ cm} \)[/tex]
So, the sum is:
[tex]\[ \text{Sum} = \text{side}_a + \text{side}_b + \text{side}_b = 5 + 5 + 12 + 12 = 34 \text{ cm} \][/tex]
Therefore, the sum of the lengths of the other three sides of the rectangle is 34 cm.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.