Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's explore the probabilities step by step.
### Part (a): Probability of drawing a spade or a king
First, remember that there are 52 cards in a standard deck.
1. Number of spades: There are 13 spades in a standard deck.
2. Number of kings: There are 4 kings in a deck.
3. Number of spade kings: Since the king of spades is counted in both the spade set and king set, we must avoid counting it twice.
Therefore, the number of favorable outcomes for drawing a spade or a king:
[tex]\[ 13 \ (\text{spades}) + 4 \ (\text{kings}) - 1 \ (\text{king of spades}) = 16 \][/tex]
The probability:
[tex]\[ \frac{16}{52} = \frac{4}{13} \approx 0.3077 \][/tex]
### Part (b): Probability of drawing neither a jack nor a king
1. Number of jacks: 4 jacks in a deck.
2. Number of kings: 4 kings in a deck.
There are 8 cards that are either a jack or a king. Consequently, the number of cards that are neither jack nor king:
[tex]\[ 52 - 8 = 44 \][/tex]
The probability:
[tex]\[ \frac{44}{52} = \frac{11}{13} \approx 0.8462 \][/tex]
### Part (c): Probability of drawing a club and queen
1. Number of queen of clubs: There is exactly 1 queen of clubs.
The probability:
[tex]\[ \frac{1}{52} \approx 0.0192 \][/tex]
In summary, the probabilities are:
- Drawing a spade or a king: [tex]\( \approx 0.3077 \)[/tex]
- Drawing neither a jack nor a king: [tex]\( \approx 0.8462 \)[/tex]
- Drawing a club and queen: [tex]\( \approx 0.0192 \)[/tex]
### Part (a): Probability of drawing a spade or a king
First, remember that there are 52 cards in a standard deck.
1. Number of spades: There are 13 spades in a standard deck.
2. Number of kings: There are 4 kings in a deck.
3. Number of spade kings: Since the king of spades is counted in both the spade set and king set, we must avoid counting it twice.
Therefore, the number of favorable outcomes for drawing a spade or a king:
[tex]\[ 13 \ (\text{spades}) + 4 \ (\text{kings}) - 1 \ (\text{king of spades}) = 16 \][/tex]
The probability:
[tex]\[ \frac{16}{52} = \frac{4}{13} \approx 0.3077 \][/tex]
### Part (b): Probability of drawing neither a jack nor a king
1. Number of jacks: 4 jacks in a deck.
2. Number of kings: 4 kings in a deck.
There are 8 cards that are either a jack or a king. Consequently, the number of cards that are neither jack nor king:
[tex]\[ 52 - 8 = 44 \][/tex]
The probability:
[tex]\[ \frac{44}{52} = \frac{11}{13} \approx 0.8462 \][/tex]
### Part (c): Probability of drawing a club and queen
1. Number of queen of clubs: There is exactly 1 queen of clubs.
The probability:
[tex]\[ \frac{1}{52} \approx 0.0192 \][/tex]
In summary, the probabilities are:
- Drawing a spade or a king: [tex]\( \approx 0.3077 \)[/tex]
- Drawing neither a jack nor a king: [tex]\( \approx 0.8462 \)[/tex]
- Drawing a club and queen: [tex]\( \approx 0.0192 \)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.