Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the difference between the two polynomials [tex]\((-2 x^3 y^2 + 4 x^2 y^3 - 3 x y^4)\)[/tex] and [tex]\((6 x^4 y - 5 x^2 y^3 - y^5)\)[/tex], follow these steps:
1. Write both polynomials separately:
- The first polynomial is [tex]\(P_1 = -2 x^3 y^2 + 4 x^2 y^3 - 3 x y^4\)[/tex].
- The second polynomial is [tex]\(P_2 = 6 x^4 y - 5 x^2 y^3 - y^5\)[/tex].
2. Subtract the second polynomial from the first polynomial:
[tex]\[ P_1 - P_2 = \left(-2 x^3 y^2 + 4 x^2 y^3 - 3 x y^4\right) - \left(6 x^4 y - 5 x^2 y^3 - y^5\right) \][/tex]
3. Distribute the subtraction across the second polynomial:
[tex]\[ P_1 - P_2 = -2 x^3 y^2 + 4 x^2 y^3 - 3 x y^4 - 6 x^4 y + 5 x^2 y^3 + y^5 \][/tex]
4. Combine like terms:
- The term with [tex]\(x^4 y\)[/tex]: [tex]\(0 - 6 x^4 y = -6 x^4 y\)[/tex].
- The term with [tex]\(x^3 y^2\)[/tex]: [tex]\(-2 x^3 y^2 + 0 = -2 x^3 y^2\)[/tex].
- The term with [tex]\(x^2 y^3\)[/tex]: [tex]\(4 x^2 y^3 + 5 x^2 y^3 = 9 x^2 y^3\)[/tex].
- The term with [tex]\(x y^4\)[/tex]: [tex]\(-3 x y^4 + 0 = -3 x y^4\)[/tex].
- The term with [tex]\(y^5\)[/tex]: [tex]\(0 + y^5 = y^5\)[/tex].
5. Write the simplified polynomial:
[tex]\[ P_1 - P_2 = -6 x^4 y - 2 x^3 y^2 + 9 x^2 y^3 - 3 x y^4 + y^5 \][/tex]
So, the difference of the polynomials is:
[tex]\[ y(-6 x^4 - 2 x^3 y + 9 x^2 y^2 - 3 x y^3 - y^4) \][/tex]
The correct answer is [tex]\(-6 x^4 y - 2 x^3 y^2 + 9 x^2 y^3 - 3 x y^4 + y^5\)[/tex]. This matches with the first option provided.
1. Write both polynomials separately:
- The first polynomial is [tex]\(P_1 = -2 x^3 y^2 + 4 x^2 y^3 - 3 x y^4\)[/tex].
- The second polynomial is [tex]\(P_2 = 6 x^4 y - 5 x^2 y^3 - y^5\)[/tex].
2. Subtract the second polynomial from the first polynomial:
[tex]\[ P_1 - P_2 = \left(-2 x^3 y^2 + 4 x^2 y^3 - 3 x y^4\right) - \left(6 x^4 y - 5 x^2 y^3 - y^5\right) \][/tex]
3. Distribute the subtraction across the second polynomial:
[tex]\[ P_1 - P_2 = -2 x^3 y^2 + 4 x^2 y^3 - 3 x y^4 - 6 x^4 y + 5 x^2 y^3 + y^5 \][/tex]
4. Combine like terms:
- The term with [tex]\(x^4 y\)[/tex]: [tex]\(0 - 6 x^4 y = -6 x^4 y\)[/tex].
- The term with [tex]\(x^3 y^2\)[/tex]: [tex]\(-2 x^3 y^2 + 0 = -2 x^3 y^2\)[/tex].
- The term with [tex]\(x^2 y^3\)[/tex]: [tex]\(4 x^2 y^3 + 5 x^2 y^3 = 9 x^2 y^3\)[/tex].
- The term with [tex]\(x y^4\)[/tex]: [tex]\(-3 x y^4 + 0 = -3 x y^4\)[/tex].
- The term with [tex]\(y^5\)[/tex]: [tex]\(0 + y^5 = y^5\)[/tex].
5. Write the simplified polynomial:
[tex]\[ P_1 - P_2 = -6 x^4 y - 2 x^3 y^2 + 9 x^2 y^3 - 3 x y^4 + y^5 \][/tex]
So, the difference of the polynomials is:
[tex]\[ y(-6 x^4 - 2 x^3 y + 9 x^2 y^2 - 3 x y^3 - y^4) \][/tex]
The correct answer is [tex]\(-6 x^4 y - 2 x^3 y^2 + 9 x^2 y^3 - 3 x y^4 + y^5\)[/tex]. This matches with the first option provided.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.