Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

4. Coal reacts with hot steam to form [tex]CO[/tex] and [tex]H_2[/tex]. These substances react in the presence of a catalyst to give methane and water vapor.

[tex]\ \textless \ br/\ \textgreater \ CO_{(g)} + 3H_{2(g)} \rightleftharpoons CH_{4(g)} + H_2O_{(g)}\ \textless \ br/\ \textgreater \ [/tex]

(i) Write the forward and reverse reactions for this equilibrium.

(ii) Derive the [tex]K_C[/tex] expression for the reaction.

(iii) Determine the units for [tex]K_C[/tex].


Sagot :

Certainly! Let's tackle each part of the problem step-by-step.

### (i) Forward and Reverse Reactions

The given chemical equilibrium reaction is:
[tex]\[ \text{CO}_{(g)} + 3 \text{H}_2{(g)} \rightleftharpoons \text{CH}_4{(g)} + \text{H}_2\text{O}_{(g)} \][/tex]

For writing the reactions separately:

- Forward reaction:
[tex]\[ \text{CO}_{(g)} + 3 \text{H}_2{(g)} \rightarrow \text{CH}_4{(g)} + \text{H}_2\text{O}_{(g)} \][/tex]

- Reverse reaction:
[tex]\[ \text{CH}_4{(g)} + \text{H}_2\text{O}_{(g)} \rightarrow \text{CO}_{(g)} + 3 \text{H}_2{(g)} \][/tex]

### (ii) Derive [tex]\( K_C \)[/tex] Expression for the Reaction

The equilibrium constant ([tex]\( K_C \)[/tex]) for the given reaction can be expressed in terms of the concentrations of the reactants and products.

For the reaction:
[tex]\[ \text{CO}_{(g)} + 3 \text{H}_2{(g)} \rightleftharpoons \text{CH}_4{(g)} + \text{H}_2\text{O}_{(g)} \][/tex]

The equilibrium constant [tex]\( K_C \)[/tex] is given by the ratio of the product of the concentrations of the products to the product of the concentrations of the reactants, each raised to the power of their stoichiometric coefficients.

Thus, the expression for [tex]\( K_C \)[/tex] is:
[tex]\[ K_C = \frac{[\text{CH}_4][\text{H}_2\text{O}]}{[\text{CO}][\text{H}_2]^3} \][/tex]

### (iii) Determine Units for [tex]\( K_C \)[/tex]

To determine the units for [tex]\( K_C \)[/tex], we need to consider the concentrations involved. Concentrations are typically expressed in moles per liter (mol/L).

In the equilibrium expression:
[tex]\[ K_C = \frac{[\text{CH}_4][\text{H}_2\text{O}]}{[\text{CO}][\text{H}_2]^3} \][/tex]

Each concentration term has units of [tex]\( \text{mol/L} \)[/tex]. Substituting these units into the expression gives:

[tex]\[ K_C = \frac{(\text{mol/L})(\text{mol/L})}{(\text{mol/L})(\text{mol/L})^3} \][/tex]

Simplify the units:

[tex]\[ K_C = \frac{(\text{mol/L}) (\text{mol/L})}{(\text{mol/L}) (\text{mol/L}) (\text{mol/L}) (\text{mol/L})} \][/tex]

[tex]\[ K_C = \frac{(\text{mol/L})^2}{(\text{mol/L})^4} \][/tex]

[tex]\[ K_C = (\text{mol/L})^{-2} \][/tex]

So, the units for [tex]\( K_C \)[/tex] are:
[tex]\[ K_C = \text{(L/mol)}^2 \][/tex]

Thus, the units for [tex]\( K_C \)[/tex] in this reaction are [tex]\( \text{(L/mol)}^2 \)[/tex].

Now, we have written forward and reverse reactions, derived the expression for [tex]\( K_C \)[/tex], and determined its units.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.