Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To evaluate the triple integral [tex]\(\iiint_E \sqrt{x^2 + z^2} \, dV\)[/tex], where [tex]\(E\)[/tex] is the region bounded by the paraboloid [tex]\(y = x^2 + z^2\)[/tex] and the plane [tex]\(y = 4\)[/tex], we can use cylindrical coordinates to simplify the calculation. Let's break this down step by step.
### Step 1: Convert to Cylindrical Coordinates
In cylindrical coordinates, the relationships between Cartesian coordinates [tex]\((x, y, z)\)[/tex] and cylindrical coordinates [tex]\((r, \theta, y)\)[/tex] are given by:
[tex]\[ x = r \cos \theta \][/tex]
[tex]\[ z = r \sin \theta \][/tex]
[tex]\[ r = \sqrt{x^2 + z^2} \][/tex]
The volume element [tex]\(dV\)[/tex] in cylindrical coordinates is [tex]\(r \, dr \, d\theta \, dy\)[/tex].
### Step 2: Set Up the Integral
The integrand [tex]\(\sqrt{x^2 + z^2}\)[/tex] in cylindrical coordinates becomes [tex]\(\sqrt{r^2} = r\)[/tex]. So the integral to evaluate is:
[tex]\[ \iiint_E r \, r \, dr \, d\theta \, dy = \iiint_E r^2 \, dr \, d\theta \, dy \][/tex]
### Step 3: Determine the Limits of Integration
Let's identify the bounds for [tex]\(r\)[/tex], [tex]\(\theta\)[/tex], and [tex]\(y\)[/tex]:
- [tex]\(r\)[/tex] ranges from [tex]\(0\)[/tex] to the radius at which the plane intersects the paraboloid. When [tex]\(y = 4\)[/tex], we have [tex]\(4 = r^2\)[/tex], which gives [tex]\(r = 2\)[/tex]. So, [tex]\(r\)[/tex] ranges from [tex]\(0\)[/tex] to [tex]\(2\)[/tex].
- [tex]\(\theta\)[/tex] ranges from [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex].
- [tex]\(y\)[/tex] ranges from the surface of the paraboloid [tex]\(y = r^2\)[/tex] to the plane [tex]\(y = 4\)[/tex].
Thus, our limits of integration are:
[tex]\[ r: 0 \text{ to } 2 \][/tex]
[tex]\[ \theta: 0 \text{ to } 2\pi \][/tex]
[tex]\[ y: r^2 \text{ to } 4 \][/tex]
### Step 4: Write the Triple Integral
Substituting these limits and the integrand into the triple integral, we get:
[tex]\[ \iiint_E r^2 \, dy \, dr \, d\theta = \int_0^{2\pi} \int_0^2 \int_{r^2}^4 r^2 \, dy \, dr \, d\theta \][/tex]
### Step 5: Evaluate the Integral
First, we integrate with respect to [tex]\(y\)[/tex]:
[tex]\[ \int_{r^2}^4 r^2 \, dy = r^2 [y]_{r^2}^4 = r^2 (4 - r^2) \][/tex]
Now our integral becomes:
[tex]\[ \int_0^{2\pi} \int_0^2 r^2 (4 - r^2) \, dr \, d\theta \][/tex]
Evaluate the inner integral with respect to [tex]\(r\)[/tex]:
[tex]\[ \int_0^2 r^2 (4 - r^2) \, dr = \int_0^2 (4r^2 - r^4) \, dr \][/tex]
This can be separated into two integrals:
[tex]\[ \int_0^2 4r^2 \, dr - \int_0^2 r^4 \, dr \][/tex]
Evaluate each integral:
[tex]\[ \int_0^2 4r^2 \, dr = 4 \int_0^2 r^2 \, dr = 4 \left[ \frac{r^3}{3} \right]_0^2 = 4 \cdot \frac{8}{3} = \frac{32}{3} \][/tex]
[tex]\[ \int_0^2 r^4 \, dr = \left[ \frac{r^5}{5} \right]_0^2 = \frac{32}{5} \][/tex]
Combine the results:
[tex]\[ \frac{32}{3} - \frac{32}{5} = \frac{160}{15} - \frac{96}{15} = \frac{64}{15} \][/tex]
Now the integral becomes:
[tex]\[ \int_0^{2\pi} \frac{64}{15} \, d\theta \][/tex]
Finally, integrate with respect to [tex]\(\theta\)[/tex]:
[tex]\[ \int_0^{2\pi} \frac{64}{15} \, d\theta = \frac{64}{15} \left[ \theta \right]_0^{2\pi} = \frac{64}{15} \cdot 2\pi = \frac{128\pi}{15} \][/tex]
Therefore, the value of the integral is:
[tex]\[ \boxed{\frac{128\pi}{15}} \][/tex]
### Step 1: Convert to Cylindrical Coordinates
In cylindrical coordinates, the relationships between Cartesian coordinates [tex]\((x, y, z)\)[/tex] and cylindrical coordinates [tex]\((r, \theta, y)\)[/tex] are given by:
[tex]\[ x = r \cos \theta \][/tex]
[tex]\[ z = r \sin \theta \][/tex]
[tex]\[ r = \sqrt{x^2 + z^2} \][/tex]
The volume element [tex]\(dV\)[/tex] in cylindrical coordinates is [tex]\(r \, dr \, d\theta \, dy\)[/tex].
### Step 2: Set Up the Integral
The integrand [tex]\(\sqrt{x^2 + z^2}\)[/tex] in cylindrical coordinates becomes [tex]\(\sqrt{r^2} = r\)[/tex]. So the integral to evaluate is:
[tex]\[ \iiint_E r \, r \, dr \, d\theta \, dy = \iiint_E r^2 \, dr \, d\theta \, dy \][/tex]
### Step 3: Determine the Limits of Integration
Let's identify the bounds for [tex]\(r\)[/tex], [tex]\(\theta\)[/tex], and [tex]\(y\)[/tex]:
- [tex]\(r\)[/tex] ranges from [tex]\(0\)[/tex] to the radius at which the plane intersects the paraboloid. When [tex]\(y = 4\)[/tex], we have [tex]\(4 = r^2\)[/tex], which gives [tex]\(r = 2\)[/tex]. So, [tex]\(r\)[/tex] ranges from [tex]\(0\)[/tex] to [tex]\(2\)[/tex].
- [tex]\(\theta\)[/tex] ranges from [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex].
- [tex]\(y\)[/tex] ranges from the surface of the paraboloid [tex]\(y = r^2\)[/tex] to the plane [tex]\(y = 4\)[/tex].
Thus, our limits of integration are:
[tex]\[ r: 0 \text{ to } 2 \][/tex]
[tex]\[ \theta: 0 \text{ to } 2\pi \][/tex]
[tex]\[ y: r^2 \text{ to } 4 \][/tex]
### Step 4: Write the Triple Integral
Substituting these limits and the integrand into the triple integral, we get:
[tex]\[ \iiint_E r^2 \, dy \, dr \, d\theta = \int_0^{2\pi} \int_0^2 \int_{r^2}^4 r^2 \, dy \, dr \, d\theta \][/tex]
### Step 5: Evaluate the Integral
First, we integrate with respect to [tex]\(y\)[/tex]:
[tex]\[ \int_{r^2}^4 r^2 \, dy = r^2 [y]_{r^2}^4 = r^2 (4 - r^2) \][/tex]
Now our integral becomes:
[tex]\[ \int_0^{2\pi} \int_0^2 r^2 (4 - r^2) \, dr \, d\theta \][/tex]
Evaluate the inner integral with respect to [tex]\(r\)[/tex]:
[tex]\[ \int_0^2 r^2 (4 - r^2) \, dr = \int_0^2 (4r^2 - r^4) \, dr \][/tex]
This can be separated into two integrals:
[tex]\[ \int_0^2 4r^2 \, dr - \int_0^2 r^4 \, dr \][/tex]
Evaluate each integral:
[tex]\[ \int_0^2 4r^2 \, dr = 4 \int_0^2 r^2 \, dr = 4 \left[ \frac{r^3}{3} \right]_0^2 = 4 \cdot \frac{8}{3} = \frac{32}{3} \][/tex]
[tex]\[ \int_0^2 r^4 \, dr = \left[ \frac{r^5}{5} \right]_0^2 = \frac{32}{5} \][/tex]
Combine the results:
[tex]\[ \frac{32}{3} - \frac{32}{5} = \frac{160}{15} - \frac{96}{15} = \frac{64}{15} \][/tex]
Now the integral becomes:
[tex]\[ \int_0^{2\pi} \frac{64}{15} \, d\theta \][/tex]
Finally, integrate with respect to [tex]\(\theta\)[/tex]:
[tex]\[ \int_0^{2\pi} \frac{64}{15} \, d\theta = \frac{64}{15} \left[ \theta \right]_0^{2\pi} = \frac{64}{15} \cdot 2\pi = \frac{128\pi}{15} \][/tex]
Therefore, the value of the integral is:
[tex]\[ \boxed{\frac{128\pi}{15}} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.