Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To evaluate the triple integral [tex]\(\iiint_E \sqrt{x^2 + z^2} \, dV\)[/tex], where [tex]\(E\)[/tex] is the region bounded by the paraboloid [tex]\(y = x^2 + z^2\)[/tex] and the plane [tex]\(y = 4\)[/tex], we can use cylindrical coordinates to simplify the calculation. Let's break this down step by step.
### Step 1: Convert to Cylindrical Coordinates
In cylindrical coordinates, the relationships between Cartesian coordinates [tex]\((x, y, z)\)[/tex] and cylindrical coordinates [tex]\((r, \theta, y)\)[/tex] are given by:
[tex]\[ x = r \cos \theta \][/tex]
[tex]\[ z = r \sin \theta \][/tex]
[tex]\[ r = \sqrt{x^2 + z^2} \][/tex]
The volume element [tex]\(dV\)[/tex] in cylindrical coordinates is [tex]\(r \, dr \, d\theta \, dy\)[/tex].
### Step 2: Set Up the Integral
The integrand [tex]\(\sqrt{x^2 + z^2}\)[/tex] in cylindrical coordinates becomes [tex]\(\sqrt{r^2} = r\)[/tex]. So the integral to evaluate is:
[tex]\[ \iiint_E r \, r \, dr \, d\theta \, dy = \iiint_E r^2 \, dr \, d\theta \, dy \][/tex]
### Step 3: Determine the Limits of Integration
Let's identify the bounds for [tex]\(r\)[/tex], [tex]\(\theta\)[/tex], and [tex]\(y\)[/tex]:
- [tex]\(r\)[/tex] ranges from [tex]\(0\)[/tex] to the radius at which the plane intersects the paraboloid. When [tex]\(y = 4\)[/tex], we have [tex]\(4 = r^2\)[/tex], which gives [tex]\(r = 2\)[/tex]. So, [tex]\(r\)[/tex] ranges from [tex]\(0\)[/tex] to [tex]\(2\)[/tex].
- [tex]\(\theta\)[/tex] ranges from [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex].
- [tex]\(y\)[/tex] ranges from the surface of the paraboloid [tex]\(y = r^2\)[/tex] to the plane [tex]\(y = 4\)[/tex].
Thus, our limits of integration are:
[tex]\[ r: 0 \text{ to } 2 \][/tex]
[tex]\[ \theta: 0 \text{ to } 2\pi \][/tex]
[tex]\[ y: r^2 \text{ to } 4 \][/tex]
### Step 4: Write the Triple Integral
Substituting these limits and the integrand into the triple integral, we get:
[tex]\[ \iiint_E r^2 \, dy \, dr \, d\theta = \int_0^{2\pi} \int_0^2 \int_{r^2}^4 r^2 \, dy \, dr \, d\theta \][/tex]
### Step 5: Evaluate the Integral
First, we integrate with respect to [tex]\(y\)[/tex]:
[tex]\[ \int_{r^2}^4 r^2 \, dy = r^2 [y]_{r^2}^4 = r^2 (4 - r^2) \][/tex]
Now our integral becomes:
[tex]\[ \int_0^{2\pi} \int_0^2 r^2 (4 - r^2) \, dr \, d\theta \][/tex]
Evaluate the inner integral with respect to [tex]\(r\)[/tex]:
[tex]\[ \int_0^2 r^2 (4 - r^2) \, dr = \int_0^2 (4r^2 - r^4) \, dr \][/tex]
This can be separated into two integrals:
[tex]\[ \int_0^2 4r^2 \, dr - \int_0^2 r^4 \, dr \][/tex]
Evaluate each integral:
[tex]\[ \int_0^2 4r^2 \, dr = 4 \int_0^2 r^2 \, dr = 4 \left[ \frac{r^3}{3} \right]_0^2 = 4 \cdot \frac{8}{3} = \frac{32}{3} \][/tex]
[tex]\[ \int_0^2 r^4 \, dr = \left[ \frac{r^5}{5} \right]_0^2 = \frac{32}{5} \][/tex]
Combine the results:
[tex]\[ \frac{32}{3} - \frac{32}{5} = \frac{160}{15} - \frac{96}{15} = \frac{64}{15} \][/tex]
Now the integral becomes:
[tex]\[ \int_0^{2\pi} \frac{64}{15} \, d\theta \][/tex]
Finally, integrate with respect to [tex]\(\theta\)[/tex]:
[tex]\[ \int_0^{2\pi} \frac{64}{15} \, d\theta = \frac{64}{15} \left[ \theta \right]_0^{2\pi} = \frac{64}{15} \cdot 2\pi = \frac{128\pi}{15} \][/tex]
Therefore, the value of the integral is:
[tex]\[ \boxed{\frac{128\pi}{15}} \][/tex]
### Step 1: Convert to Cylindrical Coordinates
In cylindrical coordinates, the relationships between Cartesian coordinates [tex]\((x, y, z)\)[/tex] and cylindrical coordinates [tex]\((r, \theta, y)\)[/tex] are given by:
[tex]\[ x = r \cos \theta \][/tex]
[tex]\[ z = r \sin \theta \][/tex]
[tex]\[ r = \sqrt{x^2 + z^2} \][/tex]
The volume element [tex]\(dV\)[/tex] in cylindrical coordinates is [tex]\(r \, dr \, d\theta \, dy\)[/tex].
### Step 2: Set Up the Integral
The integrand [tex]\(\sqrt{x^2 + z^2}\)[/tex] in cylindrical coordinates becomes [tex]\(\sqrt{r^2} = r\)[/tex]. So the integral to evaluate is:
[tex]\[ \iiint_E r \, r \, dr \, d\theta \, dy = \iiint_E r^2 \, dr \, d\theta \, dy \][/tex]
### Step 3: Determine the Limits of Integration
Let's identify the bounds for [tex]\(r\)[/tex], [tex]\(\theta\)[/tex], and [tex]\(y\)[/tex]:
- [tex]\(r\)[/tex] ranges from [tex]\(0\)[/tex] to the radius at which the plane intersects the paraboloid. When [tex]\(y = 4\)[/tex], we have [tex]\(4 = r^2\)[/tex], which gives [tex]\(r = 2\)[/tex]. So, [tex]\(r\)[/tex] ranges from [tex]\(0\)[/tex] to [tex]\(2\)[/tex].
- [tex]\(\theta\)[/tex] ranges from [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex].
- [tex]\(y\)[/tex] ranges from the surface of the paraboloid [tex]\(y = r^2\)[/tex] to the plane [tex]\(y = 4\)[/tex].
Thus, our limits of integration are:
[tex]\[ r: 0 \text{ to } 2 \][/tex]
[tex]\[ \theta: 0 \text{ to } 2\pi \][/tex]
[tex]\[ y: r^2 \text{ to } 4 \][/tex]
### Step 4: Write the Triple Integral
Substituting these limits and the integrand into the triple integral, we get:
[tex]\[ \iiint_E r^2 \, dy \, dr \, d\theta = \int_0^{2\pi} \int_0^2 \int_{r^2}^4 r^2 \, dy \, dr \, d\theta \][/tex]
### Step 5: Evaluate the Integral
First, we integrate with respect to [tex]\(y\)[/tex]:
[tex]\[ \int_{r^2}^4 r^2 \, dy = r^2 [y]_{r^2}^4 = r^2 (4 - r^2) \][/tex]
Now our integral becomes:
[tex]\[ \int_0^{2\pi} \int_0^2 r^2 (4 - r^2) \, dr \, d\theta \][/tex]
Evaluate the inner integral with respect to [tex]\(r\)[/tex]:
[tex]\[ \int_0^2 r^2 (4 - r^2) \, dr = \int_0^2 (4r^2 - r^4) \, dr \][/tex]
This can be separated into two integrals:
[tex]\[ \int_0^2 4r^2 \, dr - \int_0^2 r^4 \, dr \][/tex]
Evaluate each integral:
[tex]\[ \int_0^2 4r^2 \, dr = 4 \int_0^2 r^2 \, dr = 4 \left[ \frac{r^3}{3} \right]_0^2 = 4 \cdot \frac{8}{3} = \frac{32}{3} \][/tex]
[tex]\[ \int_0^2 r^4 \, dr = \left[ \frac{r^5}{5} \right]_0^2 = \frac{32}{5} \][/tex]
Combine the results:
[tex]\[ \frac{32}{3} - \frac{32}{5} = \frac{160}{15} - \frac{96}{15} = \frac{64}{15} \][/tex]
Now the integral becomes:
[tex]\[ \int_0^{2\pi} \frac{64}{15} \, d\theta \][/tex]
Finally, integrate with respect to [tex]\(\theta\)[/tex]:
[tex]\[ \int_0^{2\pi} \frac{64}{15} \, d\theta = \frac{64}{15} \left[ \theta \right]_0^{2\pi} = \frac{64}{15} \cdot 2\pi = \frac{128\pi}{15} \][/tex]
Therefore, the value of the integral is:
[tex]\[ \boxed{\frac{128\pi}{15}} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.