Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the midpoint of the line segment connecting two points [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we use the midpoint formula. The midpoint formula is given by:
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] are the coordinates of point [tex]\(A\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the coordinates of point [tex]\(B\)[/tex].
Given:
[tex]\[ A = (-3, -5) \][/tex]
[tex]\[ B = (2, 5) \][/tex]
Let's identify the coordinates:
[tex]\[ x_1 = -3, \quad y_1 = -5 \][/tex]
[tex]\[ x_2 = 2, \quad y_2 = 5 \][/tex]
We now substitute these coordinates into the midpoint formula:
1. Calculate the x-coordinate of the midpoint:
[tex]\[ \frac{x_1 + x_2}{2} = \frac{-3 + 2}{2} = \frac{-1}{2} = -0.5 \][/tex]
2. Calculate the y-coordinate of the midpoint:
[tex]\[ \frac{y_1 + y_2}{2} = \frac{-5 + 5}{2} = \frac{0}{2} = 0 \][/tex]
Therefore, the coordinates of the midpoint are:
[tex]\[ (-0.5, 0) \][/tex]
So, the midpoint of the line segment [tex]\(\overline{A B}\)[/tex] is [tex]\( \boxed{(-0.5, 0)} \)[/tex].
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] are the coordinates of point [tex]\(A\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the coordinates of point [tex]\(B\)[/tex].
Given:
[tex]\[ A = (-3, -5) \][/tex]
[tex]\[ B = (2, 5) \][/tex]
Let's identify the coordinates:
[tex]\[ x_1 = -3, \quad y_1 = -5 \][/tex]
[tex]\[ x_2 = 2, \quad y_2 = 5 \][/tex]
We now substitute these coordinates into the midpoint formula:
1. Calculate the x-coordinate of the midpoint:
[tex]\[ \frac{x_1 + x_2}{2} = \frac{-3 + 2}{2} = \frac{-1}{2} = -0.5 \][/tex]
2. Calculate the y-coordinate of the midpoint:
[tex]\[ \frac{y_1 + y_2}{2} = \frac{-5 + 5}{2} = \frac{0}{2} = 0 \][/tex]
Therefore, the coordinates of the midpoint are:
[tex]\[ (-0.5, 0) \][/tex]
So, the midpoint of the line segment [tex]\(\overline{A B}\)[/tex] is [tex]\( \boxed{(-0.5, 0)} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.