Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the coordinates of point [tex]\( B \)[/tex], let's use the fact that point [tex]\( M \)[/tex] is the midpoint of the line segment connecting points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]. The midpoint [tex]\( M(x, y) \)[/tex] of a segment with endpoints [tex]\( A(x_1, y_1) \)[/tex] and [tex]\( B(x_2, y_2) \)[/tex] can be found using the midpoint formula:
[tex]\[ M_x = \frac{A_x + B_x}{2}, \quad M_y = \frac{A_y + B_y}{2} \][/tex]
Given the coordinates of point [tex]\( A \)[/tex] as [tex]\( (-7, -9) \)[/tex] and the coordinates of the midpoint [tex]\( M \)[/tex] as [tex]\( (-0.5, -3) \)[/tex], we can set up the following system of equations:
[tex]\[ -0.5 = \frac{-7 + B_x}{2} \][/tex]
and
[tex]\[ -3 = \frac{-9 + B_y}{2} \][/tex]
First, solve for [tex]\( B_x \)[/tex]:
[tex]\[ -0.5 = \frac{-7 + B_x}{2} \][/tex]
Multiply both sides of the equation by 2 to eliminate the fraction:
[tex]\[ -1 = -7 + B_x \][/tex]
Add 7 to both sides of the equation to solve for [tex]\( B_x \)[/tex]:
[tex]\[ -1 + 7 = B_x \][/tex]
[tex]\[ B_x = 6 \][/tex]
Next, solve for [tex]\( B_y \)[/tex]:
[tex]\[ -3 = \frac{-9 + B_y}{2} \][/tex]
Multiply both sides of the equation by 2 to eliminate the fraction:
[tex]\[ -6 = -9 + B_y \][/tex]
Add 9 to both sides of the equation to solve for [tex]\( B_y \)[/tex]:
[tex]\[ -6 + 9 = B_y \][/tex]
[tex]\[ B_y = 3 \][/tex]
Thus, the coordinates of point [tex]\( B \)[/tex] are [tex]\( (6, 3) \)[/tex].
[tex]\[ M_x = \frac{A_x + B_x}{2}, \quad M_y = \frac{A_y + B_y}{2} \][/tex]
Given the coordinates of point [tex]\( A \)[/tex] as [tex]\( (-7, -9) \)[/tex] and the coordinates of the midpoint [tex]\( M \)[/tex] as [tex]\( (-0.5, -3) \)[/tex], we can set up the following system of equations:
[tex]\[ -0.5 = \frac{-7 + B_x}{2} \][/tex]
and
[tex]\[ -3 = \frac{-9 + B_y}{2} \][/tex]
First, solve for [tex]\( B_x \)[/tex]:
[tex]\[ -0.5 = \frac{-7 + B_x}{2} \][/tex]
Multiply both sides of the equation by 2 to eliminate the fraction:
[tex]\[ -1 = -7 + B_x \][/tex]
Add 7 to both sides of the equation to solve for [tex]\( B_x \)[/tex]:
[tex]\[ -1 + 7 = B_x \][/tex]
[tex]\[ B_x = 6 \][/tex]
Next, solve for [tex]\( B_y \)[/tex]:
[tex]\[ -3 = \frac{-9 + B_y}{2} \][/tex]
Multiply both sides of the equation by 2 to eliminate the fraction:
[tex]\[ -6 = -9 + B_y \][/tex]
Add 9 to both sides of the equation to solve for [tex]\( B_y \)[/tex]:
[tex]\[ -6 + 9 = B_y \][/tex]
[tex]\[ B_y = 3 \][/tex]
Thus, the coordinates of point [tex]\( B \)[/tex] are [tex]\( (6, 3) \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.