Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure! Let's simplify the expression [tex]\(\frac{24 x^3 + 81 y^3}{4 x + 6 y}\)[/tex] step-by-step.
1. Factor the numerator and denominator if possible:
- Notice that both terms in the denominator [tex]\(4x + 6y\)[/tex] can be simplified by factoring out the greatest common divisor (GCD), which is 2. So, we can write:
[tex]\[ 4x + 6y = 2(2x + 3y) \][/tex]
- For the numerator [tex]\(24x^3 + 81y^3\)[/tex], we note that the terms [tex]\(24x^3\)[/tex] and [tex]\(81y^3\)[/tex] can be grouped to form:
[tex]\[ 24x^3 + 81y^3 = 3(8x^3) + 3(27y^3) \][/tex]
2. Simplify the expression by canceling common factors:
- Substituting back, we get the numerator:
[tex]\[ 24x^3 + 81y^3 = 3 \cdot (8x^3) + 3 \cdot (27y^3) = 3(8x^3 + 27y^3) \][/tex]
And the denominator, as previously factored:
[tex]\[ 4x + 6y = 2(2x + 3y) \][/tex]
3. Combine the rewritten numerator and denominator:
- The expression now is:
[tex]\[ \frac{24x^3 + 81y^3}{4x + 6y} = \frac{3(8x^3 + 27y^3)}{2(2x + 3y)} \][/tex]
4. Express the simplified fraction:
Since there are no more common factors to cancel in [tex]\(\frac{3(8x^3 + 27y^3)}{2(2x + 3y)}\)[/tex], we obtain the final simplified form:
[tex]\[ \frac{24x^3 + 81y^3}{4x + 6y} = \frac{3(8x^3 + 27y^3)}{2(2x + 3y)} \][/tex]
So, the simplified form of the given expression is:
[tex]\[\boxed{\frac{3(8x^3 + 27y^3)}{2(2x + 3y)}}\][/tex]
1. Factor the numerator and denominator if possible:
- Notice that both terms in the denominator [tex]\(4x + 6y\)[/tex] can be simplified by factoring out the greatest common divisor (GCD), which is 2. So, we can write:
[tex]\[ 4x + 6y = 2(2x + 3y) \][/tex]
- For the numerator [tex]\(24x^3 + 81y^3\)[/tex], we note that the terms [tex]\(24x^3\)[/tex] and [tex]\(81y^3\)[/tex] can be grouped to form:
[tex]\[ 24x^3 + 81y^3 = 3(8x^3) + 3(27y^3) \][/tex]
2. Simplify the expression by canceling common factors:
- Substituting back, we get the numerator:
[tex]\[ 24x^3 + 81y^3 = 3 \cdot (8x^3) + 3 \cdot (27y^3) = 3(8x^3 + 27y^3) \][/tex]
And the denominator, as previously factored:
[tex]\[ 4x + 6y = 2(2x + 3y) \][/tex]
3. Combine the rewritten numerator and denominator:
- The expression now is:
[tex]\[ \frac{24x^3 + 81y^3}{4x + 6y} = \frac{3(8x^3 + 27y^3)}{2(2x + 3y)} \][/tex]
4. Express the simplified fraction:
Since there are no more common factors to cancel in [tex]\(\frac{3(8x^3 + 27y^3)}{2(2x + 3y)}\)[/tex], we obtain the final simplified form:
[tex]\[ \frac{24x^3 + 81y^3}{4x + 6y} = \frac{3(8x^3 + 27y^3)}{2(2x + 3y)} \][/tex]
So, the simplified form of the given expression is:
[tex]\[\boxed{\frac{3(8x^3 + 27y^3)}{2(2x + 3y)}}\][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.