Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:To find the inverse Laplace transform of the given functions \( F(s) \), we'll go through each one step-by-step. We'll use the method of partial fractions where necessary, and for logarithmic and repeated roots, we'll employ appropriate methods to handle them.
### (1) \( F(s) = 2s^2 - 10s + 16 \)
1. **Factorize the denominator (if applicable):**
The given function \( F(s) \) does not have a denominator explicitly shown, so we assume it's in the form \( F(s) = \frac{N(s)}{D(s)} \) where \( D(s) = 1 \) (since it's not explicitly given).
2. **Find the partial fraction decomposition:**
Since there's no denominator to decompose, we proceed directly to finding the inverse Laplace transform.
3. **Inverse Laplace Transform:**
For each term \( 2s^2 - 10s + 16 \):
- \( \mathcal{L}^{-1}\{2s^2\} = 2 \cdot \frac{d^2}{dt^2} \delta(t) = 2t^2 \)
- \( \mathcal{L}^{-1}\{-10s\} = -10 \cdot \delta'(t) = -10 \)
- \( \mathcal{L}^{-1}\{16\} = 16 \cdot \delta(t) = 16 \)
Therefore,
\[
\mathcal{L}^{-1}\{2s^2 - 10s + 16\} = 2t^2 - 10\delta'(t) + 16\delta(t)
\]
### (2) \( F(s) = \frac{4s^2 + 2s}{2s + 5} \)
1. **Perform partial fraction decomposition:**
\[
F(s) = \frac{4s^2 + 2s}{2s + 5} = \frac{4s^2 + 2s}{2(s + \frac{5}{2})}
\]
Perform partial fractions:
\[
\frac{4s^2 + 2s}{2(s + \frac{5}{2})} = \frac{A}{s + \frac{5}{2}} + \frac{B}{2}
\]
Multiply through by \( 2(s + \frac{5}{2}) \):
\[
4s^2 + 2s = A \cdot 2 + B \cdot (s + \frac{5}{2})
\]
\[
4s^2 + 2s = 2A + Bs + \frac{5B}{2}
\]
\[
\begin{cases}
2A = 0 \\
B = 4 \\
5B/2 = 0 \\
\ Another It Calcul have You Done Who So
Step-by-step explanation:Certainly! Let's go through each problem step-by-step to find the inverse Laplace transform for each function \( F(s) \).
### (1) \( F(s) = 2s^2 - 10s + 16 \)
1. **Inverse Laplace Transform (Direct Method):**
The inverse Laplace transform \( \mathcal{L}^{-1} \{ 2s^2 - 10s + 16 \} \) involves applying the basic transforms directly:
- \( \mathcal{L}^{-1} \{ 2s^2 \} = 2 \cdot \frac{d^2}{dt^2} \delta(t) = 2t^2 \)
(Using the property \( \mathcal{L} \{ t^n \} = \frac{n!}{s^{n+1}} \) for \( n = 2 \))
- \( \mathcal{L}^{-1} \{ -10s \} = -10 \cdot \delta'(t) = -10 \)
(Using the property \( \mathcal{L} \{ 1 \} = \frac{1}{s} \))
- \( \mathcal{L}^{-1} \{ 16 \} = 16 \cdot \delta(t) = 16 \)
(Using the property \( \mathcal{L} \{ 1 \} = \frac{1}{s} \))
Therefore, the inverse Laplace transform of \( 2s^2 - 10s + 16 \) is:
\[
\mathcal{L}^{-1} \{ 2s^2 - 10s + 16 \} = 2t^2 - 10\delta'(t) + 16\delta(t)
\]
This represents a combination of a polynomial term and two Dirac delta function terms.
### (2) \( F(s) = \frac{4s^2 + 2s}{2s + 5} \)
1. **Partial Fraction Decomposition:**
To find the inverse Laplace transform, first decompose \( F(s) \) into partial fractions:
\[
F(s) = \frac{4s^2 + 2s}{2s + 5} = \frac{4s^2 + 2s}{2(s + \frac{5}{2})}
\]
Perform partial fraction decomposition:
\[
\frac{4s^2 + 2s}{2(s + \frac{5}{2})} = \frac{A}{s + \frac{5}{2}} + \frac{B}{2}
\]
Multiply through by \( 2(s + \frac{5}{2}) \):
\[
4s^2 + 2s = A \cdot 2 + B \cdot (s + \frac{5}{2})
\]
\[
4s^2 + 2s = 2A + Bs + \frac{5B}{2}
\]
Equate coefficients:
\[
\begin{cases}
4 = B \\
2 = 2A + \frac{5B}{2}
\end{cases}
\]
Solve for \( A \) and \( B \):
- From \( B = 4 \),
- Substitute \( B = 4 \) into the second equation:
\[
2 = 2A + \frac{5 \cdot 4}{2} = 2A + 10
\]
\[
2A = -8
\]
\[
A = -4
\]
So, \( F(s) \) decomposes as:
\[
F(s) = \frac{-4}{s + \frac{5}{2}} + \frac{4}{2}
\]
\[
F(s) = -\frac{4}{s + \frac{5}{2}} + 2
\]
2. **Inverse Laplace Transform:**
Now, take the inverse Laplace transform of each term:
- \( \mathcal{L}^{-1} \left\{ -\frac{4}{s + \frac{5}{2}} \right\} = -4 e^{-\frac{5}{2}t} \)
(Using \( \mathcal{L} \left\{ e^{at} \right\} = \frac{1}{s - a} \) with \( a = -\frac{5}{2} \))
- \( \mathcal{L}^{-1} \left\{ 2 \right\} = 2 \delta(t) \)
(Using \( \mathcal{L} \left\{ 1 \right\} = \frac{1}{s} \))
Therefore, the inverse Laplace transform of \( F(s) = \frac{4s^2 + 2s}{2s + 5} \) is:
\[
\mathcal{L}^{-1} \left\{ \frac{4s^2 + 2s}{2s + 5} \right\} = -4 e^{-\frac{5}{2}t} + 2 \delta(t)
\]
### Summary:
- For \( 2s^2 - 10s + 16 \), the inverse Laplace transform is \( 2t^2 - 10\delta'(t) + 16\delta(t) \).
- For \( \frac{4s^2 + 2s}{2s + 5} \), the inverse Laplace transform is \( -4 e^{-\frac{5}{2}t} + 2 \delta(t) \).
These solutions demonstrate the step-by-step process of finding the inverse Laplace transform for each given function \( F(s) \).
Answer with Step-by-step explanation: F(s) = 2s + 2s^2 - 10s + 16):
Applying inverse Laplace transform: [f(t) = \mathcal{L}^{-1}{F(s)} = 2\delta(t) + 2e^{5t} - 5e^{2t} + 8e^{4t}]
(F(s) = \frac{4s}{2s+5} + 2s):
Applying inverse Laplace transform: [f(t) = \mathcal{L}^{-1}{F(s)} = 2e^{-5t} + 2t]
(F(s) = \ln(s-3s+3)):
This function is not in a standard form for inverse Laplace transform. We can’t directly apply the table of Laplace transforms. You might need to use other methods or consult specific tables for logarithmic functions.
(F(s) = s + 5\left(\frac{(s+1)2}{(s+2)2}\right)):
Applying inverse Laplace transform: [f(t) = \mathcal{L}^{-1}{F(s)} = e^{-t} + 5te^{-2t} + 10te^{-2t}]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.