Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To factorize the polynomial [tex]\(p^3 - 343 q^3\)[/tex], we recognize it as a difference of cubes. The general formula for factoring a difference of cubes [tex]\(a^3 - b^3\)[/tex] is:
[tex]\[a^3 - b^3 = (a - b)(a^2 + ab + b^2)\][/tex]
Identify [tex]\(a^3 = p^3\)[/tex] and [tex]\(b^3 = 343 q^3\)[/tex]:
[tex]\[p^3 - 343 q^3\][/tex]
Recognize that [tex]\(343 q^3 = (7q)^3\)[/tex], which means:
[tex]\[p^3 - (7q)^3\][/tex]
Now, use the difference of cubes formula with [tex]\(a = p\)[/tex] and [tex]\(b = 7q\)[/tex]:
[tex]\[(p)^3 - (7q)^3 = (p - 7q)\left(p^2 + (p)(7q) + (7q)^2\right)\][/tex]
Expand the terms in the second factor:
[tex]\[ p^2 + (p)(7q) + (7q)^2 = p^2 + 7pq + 49q^2 \][/tex]
Thus, the factorization of the polynomial [tex]\(p^3 - 343 q^3\)[/tex] is:
[tex]\[ (p - 7q)(p^2 + 7pq + 49q^2) \][/tex]
Among the provided options, the correct factorization corresponds to:
B. [tex]\((p - 7q)(p^2 + 7pq + 49q^2)\)[/tex]
[tex]\[a^3 - b^3 = (a - b)(a^2 + ab + b^2)\][/tex]
Identify [tex]\(a^3 = p^3\)[/tex] and [tex]\(b^3 = 343 q^3\)[/tex]:
[tex]\[p^3 - 343 q^3\][/tex]
Recognize that [tex]\(343 q^3 = (7q)^3\)[/tex], which means:
[tex]\[p^3 - (7q)^3\][/tex]
Now, use the difference of cubes formula with [tex]\(a = p\)[/tex] and [tex]\(b = 7q\)[/tex]:
[tex]\[(p)^3 - (7q)^3 = (p - 7q)\left(p^2 + (p)(7q) + (7q)^2\right)\][/tex]
Expand the terms in the second factor:
[tex]\[ p^2 + (p)(7q) + (7q)^2 = p^2 + 7pq + 49q^2 \][/tex]
Thus, the factorization of the polynomial [tex]\(p^3 - 343 q^3\)[/tex] is:
[tex]\[ (p - 7q)(p^2 + 7pq + 49q^2) \][/tex]
Among the provided options, the correct factorization corresponds to:
B. [tex]\((p - 7q)(p^2 + 7pq + 49q^2)\)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.