Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the correct factorization of the polynomial [tex]\( 2x^2 - 12x + 18 \)[/tex], we should follow a systematic approach to identify the correct factorization form. Here's a step-by-step solution:
1. Identify the polynomial: The polynomial given is [tex]\( 2x^2 - 12x + 18 \)[/tex].
2. Check for common factors:
Notice that each term in the polynomial [tex]\( 2x^2 - 12x + 18 \)[/tex] can be divided by 2. Factor out the common factor:
[tex]\[ 2x^2 - 12x + 18 = 2(x^2 - 6x + 9) \][/tex]
3. Factor the quadratic expression inside the parentheses:
Focus on the quadratic expression [tex]\( x^2 - 6x + 9 \)[/tex]:
- Find two numbers that multiply to [tex]\( 9 \)[/tex] (the constant term) and add up to [tex]\(-6\)[/tex] (the coefficient of the linear term).
- The numbers that satisfy this are [tex]\(-3\)[/tex] and [tex]\(-3\)[/tex] (since [tex]\(-3 \times -3 = 9\)[/tex] and [tex]\(-3 + (-3) = -6\)[/tex]).
Therefore, the quadratic expression can be factored as:
[tex]\[ x^2 - 6x + 9 = (x - 3)(x - 3) = (x - 3)^2 \][/tex]
4. Substitute back into the original factorization:
Now substitute back into the factored expression:
[tex]\[ 2(x^2 - 6x + 9) = 2((x - 3)^2) = 2(x - 3)^2 \][/tex]
So, the correct factorization of the polynomial [tex]\( 2x^2 - 12x + 18 \)[/tex] is:
[tex]\[ 2(x - 3)^2 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{2(x - 3)^2} \][/tex]
This corresponds to option A in the given choices. Therefore, the correct answer is A. [tex]\(2(x - 3)^2\)[/tex].
1. Identify the polynomial: The polynomial given is [tex]\( 2x^2 - 12x + 18 \)[/tex].
2. Check for common factors:
Notice that each term in the polynomial [tex]\( 2x^2 - 12x + 18 \)[/tex] can be divided by 2. Factor out the common factor:
[tex]\[ 2x^2 - 12x + 18 = 2(x^2 - 6x + 9) \][/tex]
3. Factor the quadratic expression inside the parentheses:
Focus on the quadratic expression [tex]\( x^2 - 6x + 9 \)[/tex]:
- Find two numbers that multiply to [tex]\( 9 \)[/tex] (the constant term) and add up to [tex]\(-6\)[/tex] (the coefficient of the linear term).
- The numbers that satisfy this are [tex]\(-3\)[/tex] and [tex]\(-3\)[/tex] (since [tex]\(-3 \times -3 = 9\)[/tex] and [tex]\(-3 + (-3) = -6\)[/tex]).
Therefore, the quadratic expression can be factored as:
[tex]\[ x^2 - 6x + 9 = (x - 3)(x - 3) = (x - 3)^2 \][/tex]
4. Substitute back into the original factorization:
Now substitute back into the factored expression:
[tex]\[ 2(x^2 - 6x + 9) = 2((x - 3)^2) = 2(x - 3)^2 \][/tex]
So, the correct factorization of the polynomial [tex]\( 2x^2 - 12x + 18 \)[/tex] is:
[tex]\[ 2(x - 3)^2 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{2(x - 3)^2} \][/tex]
This corresponds to option A in the given choices. Therefore, the correct answer is A. [tex]\(2(x - 3)^2\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.