Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the user equilibrium flow and travel time on each path (A, B, and C), we need to find the flow on each path where the travel times are equalized for all paths given the total demand.
Given:
- Total demand (peak hour trips) = 4000 cars
- Travel time functions:
- \( t_a = 0.25X_a + 1 \)
- \( t_b = 0.15X_b + 2 \)
- \( t_c = 0.45X_c + 8 \)
Let's find the flow on each path and the user equilibrium travel time step by step:
### Step 1: Set up the Equations for User Equilibrium
User equilibrium occurs when the travel time on each path is equalized:
\[ t_a = t_b = t_c \]
### Step 2: Express Equations in Terms of Total Demand
Convert the flow \( X \) from thousands of vehicles/h to vehicles/h:
For path A:
\[ t_a = 0.25X_a + 1 \]
For path B:
\[ t_b = 0.15X_b + 2 \]
For path C:
\[ t_c = 0.45X_c + 8 \]
### Step 3: Solve for Equilibrium Flow on Each Path
Set \( t_a = t_b = t_c \) and solve for \( X_a, X_b, X_c \).
From \( t_a = t_b \):
\[ 0.25X_a + 1 = 0.15X_b + 2 \]
\[ 0.25X_a - 0.15X_b = 1 \]
\[ 5X_a - 3X_b = 20 \quad \text{(Multiply by 20)} \quad \longrightarrow
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.