Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find [tex]\(\lim_{A \rightarrow 0} \frac{f(2 + A) - f(2)}{A}\)[/tex] for the function [tex]\(f(x) = x^2 + 2 \ln x\)[/tex], we can use the concept of the derivative. The expression given is the definition of the derivative of the function [tex]\(f(x)\)[/tex] at the point [tex]\(x=2\)[/tex].
To solve this step-by-step:
1. Identify the function [tex]\(f(x)\)[/tex] and the point of evaluation:
[tex]\[ f(x) = x^2 + 2 \ln x \][/tex]
The point of evaluation is [tex]\(x = 2\)[/tex].
2. Calculate the derivative of [tex]\(f(x)\)[/tex]:
The derivative [tex]\(f'(x)\)[/tex] of [tex]\(f(x)\)[/tex] is obtained by differentiating each term of [tex]\(f(x)\)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} (x^2) + \frac{d}{dx} (2 \ln x) \][/tex]
[tex]\[ f'(x) = 2x + \frac{2}{x} \][/tex]
3. Evaluate the derivative at [tex]\(x = 2\)[/tex]:
[tex]\[ f'(2) = 2(2) + \frac{2}{2} \][/tex]
[tex]\[ f'(2) = 4 + 1 \][/tex]
[tex]\[ f'(2) = 5 \][/tex]
4. Interpret the limit:
Using the definition of the derivative, we have:
[tex]\[ \lim_{A \rightarrow 0} \frac{f(2 + A) - f(2)}{A} = f'(2) \][/tex]
5. Conclusion:
[tex]\[ \lim_{A \rightarrow 0} \frac{f(2 + A) - f(2)}{A} = 5 \][/tex]
The correct answer is:
A. 5
To solve this step-by-step:
1. Identify the function [tex]\(f(x)\)[/tex] and the point of evaluation:
[tex]\[ f(x) = x^2 + 2 \ln x \][/tex]
The point of evaluation is [tex]\(x = 2\)[/tex].
2. Calculate the derivative of [tex]\(f(x)\)[/tex]:
The derivative [tex]\(f'(x)\)[/tex] of [tex]\(f(x)\)[/tex] is obtained by differentiating each term of [tex]\(f(x)\)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} (x^2) + \frac{d}{dx} (2 \ln x) \][/tex]
[tex]\[ f'(x) = 2x + \frac{2}{x} \][/tex]
3. Evaluate the derivative at [tex]\(x = 2\)[/tex]:
[tex]\[ f'(2) = 2(2) + \frac{2}{2} \][/tex]
[tex]\[ f'(2) = 4 + 1 \][/tex]
[tex]\[ f'(2) = 5 \][/tex]
4. Interpret the limit:
Using the definition of the derivative, we have:
[tex]\[ \lim_{A \rightarrow 0} \frac{f(2 + A) - f(2)}{A} = f'(2) \][/tex]
5. Conclusion:
[tex]\[ \lim_{A \rightarrow 0} \frac{f(2 + A) - f(2)}{A} = 5 \][/tex]
The correct answer is:
A. 5
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.