Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's factorize the given quadratic expressions step-by-step.
### (a) [tex]\( x^2 - 11x + 24 \)[/tex]
To factorize the quadratic expression [tex]\( x^2 - 11x + 24 \)[/tex], we need to find two numbers that:
1. Multiply to give the constant term (24)
2. Add up to give the coefficient of the linear term (-11)
Let's call these numbers [tex]\( a \)[/tex] and [tex]\( b \)[/tex]. Therefore, we need:
[tex]\[ ab = 24 \][/tex]
[tex]\[ a + b = -11 \][/tex]
The numbers that satisfy these conditions are [tex]\( -3 \)[/tex] and [tex]\( -8 \)[/tex]:
[tex]\[ (-3) \times (-8) = 24 \][/tex]
[tex]\[ (-3) + (-8) = -11 \][/tex]
Thus, we can write:
[tex]\[ x^2 - 11x + 24 = (x - 3)(x - 8) \][/tex]
So, the factorization of [tex]\( x^2 - 11x + 24 \)[/tex] is:
[tex]\[ (x - 3)(x - 8) \][/tex]
### (b) [tex]\( x^2 - 2x - 15 \)[/tex]
To factorize the quadratic expression [tex]\( x^2 - 2x - 15 \)[/tex], we need to find two numbers that:
1. Multiply to give the constant term (-15)
2. Add up to give the coefficient of the linear term (-2)
Let's call these numbers [tex]\( a \)[/tex] and [tex]\( b \)[/tex]. Therefore, we need:
[tex]\[ ab = -15 \][/tex]
[tex]\[ a + b = -2 \][/tex]
The numbers that satisfy these conditions are [tex]\( -5 \)[/tex] and [tex]\( 3 \)[/tex]:
[tex]\[ (-5) \times 3 = -15 \][/tex]
[tex]\[ (-5) + 3 = -2 \][/tex]
Thus, we can write:
[tex]\[ x^2 - 2x - 15 = (x - 5)(x + 3) \][/tex]
So, the factorization of [tex]\( x^2 - 2x - 15 \)[/tex] is:
[tex]\[ (x - 5)(x + 3) \][/tex]
### Conclusion
The factorized forms of the given expressions are:
(a) [tex]\( x^2 - 11x + 24 \)[/tex]:
[tex]\[ (x - 3)(x - 8) \][/tex]
(b) [tex]\( x^2 - 2x - 15 \)[/tex]:
[tex]\[ (x - 5)(x + 3) \][/tex]
### (a) [tex]\( x^2 - 11x + 24 \)[/tex]
To factorize the quadratic expression [tex]\( x^2 - 11x + 24 \)[/tex], we need to find two numbers that:
1. Multiply to give the constant term (24)
2. Add up to give the coefficient of the linear term (-11)
Let's call these numbers [tex]\( a \)[/tex] and [tex]\( b \)[/tex]. Therefore, we need:
[tex]\[ ab = 24 \][/tex]
[tex]\[ a + b = -11 \][/tex]
The numbers that satisfy these conditions are [tex]\( -3 \)[/tex] and [tex]\( -8 \)[/tex]:
[tex]\[ (-3) \times (-8) = 24 \][/tex]
[tex]\[ (-3) + (-8) = -11 \][/tex]
Thus, we can write:
[tex]\[ x^2 - 11x + 24 = (x - 3)(x - 8) \][/tex]
So, the factorization of [tex]\( x^2 - 11x + 24 \)[/tex] is:
[tex]\[ (x - 3)(x - 8) \][/tex]
### (b) [tex]\( x^2 - 2x - 15 \)[/tex]
To factorize the quadratic expression [tex]\( x^2 - 2x - 15 \)[/tex], we need to find two numbers that:
1. Multiply to give the constant term (-15)
2. Add up to give the coefficient of the linear term (-2)
Let's call these numbers [tex]\( a \)[/tex] and [tex]\( b \)[/tex]. Therefore, we need:
[tex]\[ ab = -15 \][/tex]
[tex]\[ a + b = -2 \][/tex]
The numbers that satisfy these conditions are [tex]\( -5 \)[/tex] and [tex]\( 3 \)[/tex]:
[tex]\[ (-5) \times 3 = -15 \][/tex]
[tex]\[ (-5) + 3 = -2 \][/tex]
Thus, we can write:
[tex]\[ x^2 - 2x - 15 = (x - 5)(x + 3) \][/tex]
So, the factorization of [tex]\( x^2 - 2x - 15 \)[/tex] is:
[tex]\[ (x - 5)(x + 3) \][/tex]
### Conclusion
The factorized forms of the given expressions are:
(a) [tex]\( x^2 - 11x + 24 \)[/tex]:
[tex]\[ (x - 3)(x - 8) \][/tex]
(b) [tex]\( x^2 - 2x - 15 \)[/tex]:
[tex]\[ (x - 5)(x + 3) \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.