Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Absolutely! Let's derive the difference of the quotient [tex]\(\Delta\left[\frac{f(x)}{g(x)}\right]\)[/tex] step by step.
Firstly, we start with the definition of the difference operator [tex]\(\Delta\)[/tex] applied to a general function [tex]\(h(x)\)[/tex]:
[tex]\[ \Delta h(x) = h(x+h) - h(x) \][/tex]
Given two functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex], we want to find [tex]\(\Delta\left[\frac{f(x)}{g(x)}\right]\)[/tex]. Note that:
[tex]\[ \Delta\left[\frac{f(x)}{g(x)}\right] = \left(\frac{f(x)}{g(x)}\right)(x+h) - \left(\frac{f(x)}{g(x)}\right)(x) \][/tex]
Let's denote [tex]\(F(x) = \frac{f(x)}{g(x)}\)[/tex]. Applying the definition of [tex]\(\Delta\)[/tex], we get:
[tex]\[ \Delta F(x) = \frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)} \][/tex]
To combine these fractions, we find a common denominator:
[tex]\[ \Delta F(x) = \frac{f(x+h)g(x) - f(x)g(x+h)}{g(x+h)g(x)} \][/tex]
Next, we break this expression into parts that are easier to manage by introducing the differences [tex]\(\Delta f(x)\)[/tex] and [tex]\(\Delta g(x)\)[/tex]:
[tex]\[ \Delta f(x) = f(x+h) - f(x) \quad \text{and} \quad \Delta g(x) = g(x+h) - g(x) \][/tex]
Using these definitions, we can rewrite [tex]\(f(x+h)\)[/tex] and [tex]\(g(x+h)\)[/tex] in terms of the differences:
[tex]\[ f(x+h) = f(x) + \Delta f(x) \quad \text{and} \quad g(x+h) = g(x) + \Delta g(x) \][/tex]
Now substitute these into the expression for [tex]\(\Delta F(x)\)[/tex]:
[tex]\[ \Delta F(x) = \frac{(f(x) + \Delta f(x))g(x) - f(x)(g(x) + \Delta g(x))}{g(x+h)g(x)} \][/tex]
Expanding the numerator, we obtain:
[tex]\[ \Delta F(x) = \frac{f(x)g(x) + \Delta f(x)g(x) - f(x)g(x) - f(x)\Delta g(x)}{g(x+h)g(x)} \][/tex]
Simplifying the terms in the numerator:
[tex]\[ \Delta F(x) = \frac{\Delta f(x)g(x) - f(x)\Delta g(x)}{g(x+h)g(x)} \][/tex]
Hence, we have derived the expression:
[tex]\[ \Delta\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\Delta f(x) - f(x)\Delta g(x)}{g(x+h)g(x)} \][/tex]
Thus, we've completed the proof.
Firstly, we start with the definition of the difference operator [tex]\(\Delta\)[/tex] applied to a general function [tex]\(h(x)\)[/tex]:
[tex]\[ \Delta h(x) = h(x+h) - h(x) \][/tex]
Given two functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex], we want to find [tex]\(\Delta\left[\frac{f(x)}{g(x)}\right]\)[/tex]. Note that:
[tex]\[ \Delta\left[\frac{f(x)}{g(x)}\right] = \left(\frac{f(x)}{g(x)}\right)(x+h) - \left(\frac{f(x)}{g(x)}\right)(x) \][/tex]
Let's denote [tex]\(F(x) = \frac{f(x)}{g(x)}\)[/tex]. Applying the definition of [tex]\(\Delta\)[/tex], we get:
[tex]\[ \Delta F(x) = \frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)} \][/tex]
To combine these fractions, we find a common denominator:
[tex]\[ \Delta F(x) = \frac{f(x+h)g(x) - f(x)g(x+h)}{g(x+h)g(x)} \][/tex]
Next, we break this expression into parts that are easier to manage by introducing the differences [tex]\(\Delta f(x)\)[/tex] and [tex]\(\Delta g(x)\)[/tex]:
[tex]\[ \Delta f(x) = f(x+h) - f(x) \quad \text{and} \quad \Delta g(x) = g(x+h) - g(x) \][/tex]
Using these definitions, we can rewrite [tex]\(f(x+h)\)[/tex] and [tex]\(g(x+h)\)[/tex] in terms of the differences:
[tex]\[ f(x+h) = f(x) + \Delta f(x) \quad \text{and} \quad g(x+h) = g(x) + \Delta g(x) \][/tex]
Now substitute these into the expression for [tex]\(\Delta F(x)\)[/tex]:
[tex]\[ \Delta F(x) = \frac{(f(x) + \Delta f(x))g(x) - f(x)(g(x) + \Delta g(x))}{g(x+h)g(x)} \][/tex]
Expanding the numerator, we obtain:
[tex]\[ \Delta F(x) = \frac{f(x)g(x) + \Delta f(x)g(x) - f(x)g(x) - f(x)\Delta g(x)}{g(x+h)g(x)} \][/tex]
Simplifying the terms in the numerator:
[tex]\[ \Delta F(x) = \frac{\Delta f(x)g(x) - f(x)\Delta g(x)}{g(x+h)g(x)} \][/tex]
Hence, we have derived the expression:
[tex]\[ \Delta\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\Delta f(x) - f(x)\Delta g(x)}{g(x+h)g(x)} \][/tex]
Thus, we've completed the proof.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.