Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To prove the equation [tex]\(\frac{1}{z} = \frac{3}{x} + \frac{1}{y}\)[/tex] given the relations [tex]\(2^x = 5\)[/tex] and [tex]\(y = 40z\)[/tex], follow these steps:
1. Expression for [tex]\(z\)[/tex] in terms of [tex]\(y\)[/tex]:
Given [tex]\(y = 40z\)[/tex], we can write:
[tex]\[ z = \frac{y}{40} \][/tex]
2. Substitute [tex]\(z\)[/tex] into the equation to be proven:
Substitute [tex]\(z\)[/tex] as [tex]\(\frac{y}{40}\)[/tex] in the equation:
[tex]\[ \frac{1}{z} = \frac{40}{y} \][/tex]
3. Rewrite the equation:
Now, we need to prove:
[tex]\[ \frac{40}{y} = \frac{3}{x} + \frac{1}{y} \][/tex]
4. Isolate the common denominator:
Multiply both sides of the equation by [tex]\(y\)[/tex] to clear the fraction:
[tex]\[ 40 = 3 \cdot \frac{y}{x} + 1 \][/tex]
Simplify:
[tex]\[ 40 = 3 \cdot \frac{y}{x} + 1 \][/tex]
5. Rearrange the terms:
Move 1 to the left side:
[tex]\[ 40 - 1 = 3 \cdot \frac{y}{x} \][/tex]
Simplify:
[tex]\[ 39 = 3 \cdot \frac{y}{x} \][/tex]
6. Isolate [tex]\(x\)[/tex]:
Rearrange to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{39}{3} \][/tex]
Simplify:
[tex]\[ \frac{y}{x} = 13 \][/tex]
Hence:
[tex]\[ x = \frac{y}{13} \][/tex]
7. Verify the consistency with the exponential equation:
We have from the given problem:
[tex]\[ 2^x = 5 \][/tex]
Taking the logarithm with base 2 of both sides:
[tex]\[ x = \log_2{5} \][/tex]
8. Match both expressions for [tex]\(x\)[/tex]:
Set the two expressions for [tex]\(x\)[/tex] equal:
[tex]\[ \frac{y}{13} = \log_2{5} \][/tex]
Thus:
[tex]\[ y = 13 \log_2{5} \][/tex]
9. Determine [tex]\(z\)[/tex]:
Substitute [tex]\(y\)[/tex] back into the equation for [tex]\(z\)[/tex]:
[tex]\[ z = \frac{y}{40} = \frac{13 \log_2{5}}{40} \][/tex]
10. Substitute [tex]\(y\)[/tex] and [tex]\(z\)[/tex] back into the equation to be proven:
Verify:
[tex]\[ \frac{1}{z} = \frac{40}{13 \log_2{5}} \][/tex]
And on the other side:
[tex]\[ \frac{3}{x} + \frac{1}{y} = \frac{3}{\log_2{5}} + \frac{1}{13 \log_2{5}} \][/tex]
11. Simplify the right-hand side:
Find a common denominator and add:
[tex]\[ \frac{3}{\log_2{5}} + \frac{1}{13 \log_2{5}} = \frac{3 \cdot 13 + 1}{13 \log_2{5}} = \frac{40}{13 \log_2{5}} \][/tex]
12. Comparison:
Both sides of the equation are found to be:
[tex]\[ \frac{40}{13 \log_2{5}} = \frac{40}{13 \log_2{5}} \][/tex]
Thus, the equation is consistent and holds true:
[tex]\[ \frac{1}{z} = \frac{3}{x} + \frac{1}{y} \][/tex]
1. Expression for [tex]\(z\)[/tex] in terms of [tex]\(y\)[/tex]:
Given [tex]\(y = 40z\)[/tex], we can write:
[tex]\[ z = \frac{y}{40} \][/tex]
2. Substitute [tex]\(z\)[/tex] into the equation to be proven:
Substitute [tex]\(z\)[/tex] as [tex]\(\frac{y}{40}\)[/tex] in the equation:
[tex]\[ \frac{1}{z} = \frac{40}{y} \][/tex]
3. Rewrite the equation:
Now, we need to prove:
[tex]\[ \frac{40}{y} = \frac{3}{x} + \frac{1}{y} \][/tex]
4. Isolate the common denominator:
Multiply both sides of the equation by [tex]\(y\)[/tex] to clear the fraction:
[tex]\[ 40 = 3 \cdot \frac{y}{x} + 1 \][/tex]
Simplify:
[tex]\[ 40 = 3 \cdot \frac{y}{x} + 1 \][/tex]
5. Rearrange the terms:
Move 1 to the left side:
[tex]\[ 40 - 1 = 3 \cdot \frac{y}{x} \][/tex]
Simplify:
[tex]\[ 39 = 3 \cdot \frac{y}{x} \][/tex]
6. Isolate [tex]\(x\)[/tex]:
Rearrange to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{39}{3} \][/tex]
Simplify:
[tex]\[ \frac{y}{x} = 13 \][/tex]
Hence:
[tex]\[ x = \frac{y}{13} \][/tex]
7. Verify the consistency with the exponential equation:
We have from the given problem:
[tex]\[ 2^x = 5 \][/tex]
Taking the logarithm with base 2 of both sides:
[tex]\[ x = \log_2{5} \][/tex]
8. Match both expressions for [tex]\(x\)[/tex]:
Set the two expressions for [tex]\(x\)[/tex] equal:
[tex]\[ \frac{y}{13} = \log_2{5} \][/tex]
Thus:
[tex]\[ y = 13 \log_2{5} \][/tex]
9. Determine [tex]\(z\)[/tex]:
Substitute [tex]\(y\)[/tex] back into the equation for [tex]\(z\)[/tex]:
[tex]\[ z = \frac{y}{40} = \frac{13 \log_2{5}}{40} \][/tex]
10. Substitute [tex]\(y\)[/tex] and [tex]\(z\)[/tex] back into the equation to be proven:
Verify:
[tex]\[ \frac{1}{z} = \frac{40}{13 \log_2{5}} \][/tex]
And on the other side:
[tex]\[ \frac{3}{x} + \frac{1}{y} = \frac{3}{\log_2{5}} + \frac{1}{13 \log_2{5}} \][/tex]
11. Simplify the right-hand side:
Find a common denominator and add:
[tex]\[ \frac{3}{\log_2{5}} + \frac{1}{13 \log_2{5}} = \frac{3 \cdot 13 + 1}{13 \log_2{5}} = \frac{40}{13 \log_2{5}} \][/tex]
12. Comparison:
Both sides of the equation are found to be:
[tex]\[ \frac{40}{13 \log_2{5}} = \frac{40}{13 \log_2{5}} \][/tex]
Thus, the equation is consistent and holds true:
[tex]\[ \frac{1}{z} = \frac{3}{x} + \frac{1}{y} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.