Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To prove the equation [tex]\(\frac{1}{z} = \frac{3}{x} + \frac{1}{y}\)[/tex] given the relations [tex]\(2^x = 5\)[/tex] and [tex]\(y = 40z\)[/tex], follow these steps:
1. Expression for [tex]\(z\)[/tex] in terms of [tex]\(y\)[/tex]:
Given [tex]\(y = 40z\)[/tex], we can write:
[tex]\[ z = \frac{y}{40} \][/tex]
2. Substitute [tex]\(z\)[/tex] into the equation to be proven:
Substitute [tex]\(z\)[/tex] as [tex]\(\frac{y}{40}\)[/tex] in the equation:
[tex]\[ \frac{1}{z} = \frac{40}{y} \][/tex]
3. Rewrite the equation:
Now, we need to prove:
[tex]\[ \frac{40}{y} = \frac{3}{x} + \frac{1}{y} \][/tex]
4. Isolate the common denominator:
Multiply both sides of the equation by [tex]\(y\)[/tex] to clear the fraction:
[tex]\[ 40 = 3 \cdot \frac{y}{x} + 1 \][/tex]
Simplify:
[tex]\[ 40 = 3 \cdot \frac{y}{x} + 1 \][/tex]
5. Rearrange the terms:
Move 1 to the left side:
[tex]\[ 40 - 1 = 3 \cdot \frac{y}{x} \][/tex]
Simplify:
[tex]\[ 39 = 3 \cdot \frac{y}{x} \][/tex]
6. Isolate [tex]\(x\)[/tex]:
Rearrange to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{39}{3} \][/tex]
Simplify:
[tex]\[ \frac{y}{x} = 13 \][/tex]
Hence:
[tex]\[ x = \frac{y}{13} \][/tex]
7. Verify the consistency with the exponential equation:
We have from the given problem:
[tex]\[ 2^x = 5 \][/tex]
Taking the logarithm with base 2 of both sides:
[tex]\[ x = \log_2{5} \][/tex]
8. Match both expressions for [tex]\(x\)[/tex]:
Set the two expressions for [tex]\(x\)[/tex] equal:
[tex]\[ \frac{y}{13} = \log_2{5} \][/tex]
Thus:
[tex]\[ y = 13 \log_2{5} \][/tex]
9. Determine [tex]\(z\)[/tex]:
Substitute [tex]\(y\)[/tex] back into the equation for [tex]\(z\)[/tex]:
[tex]\[ z = \frac{y}{40} = \frac{13 \log_2{5}}{40} \][/tex]
10. Substitute [tex]\(y\)[/tex] and [tex]\(z\)[/tex] back into the equation to be proven:
Verify:
[tex]\[ \frac{1}{z} = \frac{40}{13 \log_2{5}} \][/tex]
And on the other side:
[tex]\[ \frac{3}{x} + \frac{1}{y} = \frac{3}{\log_2{5}} + \frac{1}{13 \log_2{5}} \][/tex]
11. Simplify the right-hand side:
Find a common denominator and add:
[tex]\[ \frac{3}{\log_2{5}} + \frac{1}{13 \log_2{5}} = \frac{3 \cdot 13 + 1}{13 \log_2{5}} = \frac{40}{13 \log_2{5}} \][/tex]
12. Comparison:
Both sides of the equation are found to be:
[tex]\[ \frac{40}{13 \log_2{5}} = \frac{40}{13 \log_2{5}} \][/tex]
Thus, the equation is consistent and holds true:
[tex]\[ \frac{1}{z} = \frac{3}{x} + \frac{1}{y} \][/tex]
1. Expression for [tex]\(z\)[/tex] in terms of [tex]\(y\)[/tex]:
Given [tex]\(y = 40z\)[/tex], we can write:
[tex]\[ z = \frac{y}{40} \][/tex]
2. Substitute [tex]\(z\)[/tex] into the equation to be proven:
Substitute [tex]\(z\)[/tex] as [tex]\(\frac{y}{40}\)[/tex] in the equation:
[tex]\[ \frac{1}{z} = \frac{40}{y} \][/tex]
3. Rewrite the equation:
Now, we need to prove:
[tex]\[ \frac{40}{y} = \frac{3}{x} + \frac{1}{y} \][/tex]
4. Isolate the common denominator:
Multiply both sides of the equation by [tex]\(y\)[/tex] to clear the fraction:
[tex]\[ 40 = 3 \cdot \frac{y}{x} + 1 \][/tex]
Simplify:
[tex]\[ 40 = 3 \cdot \frac{y}{x} + 1 \][/tex]
5. Rearrange the terms:
Move 1 to the left side:
[tex]\[ 40 - 1 = 3 \cdot \frac{y}{x} \][/tex]
Simplify:
[tex]\[ 39 = 3 \cdot \frac{y}{x} \][/tex]
6. Isolate [tex]\(x\)[/tex]:
Rearrange to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{39}{3} \][/tex]
Simplify:
[tex]\[ \frac{y}{x} = 13 \][/tex]
Hence:
[tex]\[ x = \frac{y}{13} \][/tex]
7. Verify the consistency with the exponential equation:
We have from the given problem:
[tex]\[ 2^x = 5 \][/tex]
Taking the logarithm with base 2 of both sides:
[tex]\[ x = \log_2{5} \][/tex]
8. Match both expressions for [tex]\(x\)[/tex]:
Set the two expressions for [tex]\(x\)[/tex] equal:
[tex]\[ \frac{y}{13} = \log_2{5} \][/tex]
Thus:
[tex]\[ y = 13 \log_2{5} \][/tex]
9. Determine [tex]\(z\)[/tex]:
Substitute [tex]\(y\)[/tex] back into the equation for [tex]\(z\)[/tex]:
[tex]\[ z = \frac{y}{40} = \frac{13 \log_2{5}}{40} \][/tex]
10. Substitute [tex]\(y\)[/tex] and [tex]\(z\)[/tex] back into the equation to be proven:
Verify:
[tex]\[ \frac{1}{z} = \frac{40}{13 \log_2{5}} \][/tex]
And on the other side:
[tex]\[ \frac{3}{x} + \frac{1}{y} = \frac{3}{\log_2{5}} + \frac{1}{13 \log_2{5}} \][/tex]
11. Simplify the right-hand side:
Find a common denominator and add:
[tex]\[ \frac{3}{\log_2{5}} + \frac{1}{13 \log_2{5}} = \frac{3 \cdot 13 + 1}{13 \log_2{5}} = \frac{40}{13 \log_2{5}} \][/tex]
12. Comparison:
Both sides of the equation are found to be:
[tex]\[ \frac{40}{13 \log_2{5}} = \frac{40}{13 \log_2{5}} \][/tex]
Thus, the equation is consistent and holds true:
[tex]\[ \frac{1}{z} = \frac{3}{x} + \frac{1}{y} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.