Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To prove the equation [tex]\(\frac{1}{z} = \frac{3}{x} + \frac{1}{y}\)[/tex] given the relations [tex]\(2^x = 5\)[/tex] and [tex]\(y = 40z\)[/tex], follow these steps:
1. Expression for [tex]\(z\)[/tex] in terms of [tex]\(y\)[/tex]:
Given [tex]\(y = 40z\)[/tex], we can write:
[tex]\[ z = \frac{y}{40} \][/tex]
2. Substitute [tex]\(z\)[/tex] into the equation to be proven:
Substitute [tex]\(z\)[/tex] as [tex]\(\frac{y}{40}\)[/tex] in the equation:
[tex]\[ \frac{1}{z} = \frac{40}{y} \][/tex]
3. Rewrite the equation:
Now, we need to prove:
[tex]\[ \frac{40}{y} = \frac{3}{x} + \frac{1}{y} \][/tex]
4. Isolate the common denominator:
Multiply both sides of the equation by [tex]\(y\)[/tex] to clear the fraction:
[tex]\[ 40 = 3 \cdot \frac{y}{x} + 1 \][/tex]
Simplify:
[tex]\[ 40 = 3 \cdot \frac{y}{x} + 1 \][/tex]
5. Rearrange the terms:
Move 1 to the left side:
[tex]\[ 40 - 1 = 3 \cdot \frac{y}{x} \][/tex]
Simplify:
[tex]\[ 39 = 3 \cdot \frac{y}{x} \][/tex]
6. Isolate [tex]\(x\)[/tex]:
Rearrange to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{39}{3} \][/tex]
Simplify:
[tex]\[ \frac{y}{x} = 13 \][/tex]
Hence:
[tex]\[ x = \frac{y}{13} \][/tex]
7. Verify the consistency with the exponential equation:
We have from the given problem:
[tex]\[ 2^x = 5 \][/tex]
Taking the logarithm with base 2 of both sides:
[tex]\[ x = \log_2{5} \][/tex]
8. Match both expressions for [tex]\(x\)[/tex]:
Set the two expressions for [tex]\(x\)[/tex] equal:
[tex]\[ \frac{y}{13} = \log_2{5} \][/tex]
Thus:
[tex]\[ y = 13 \log_2{5} \][/tex]
9. Determine [tex]\(z\)[/tex]:
Substitute [tex]\(y\)[/tex] back into the equation for [tex]\(z\)[/tex]:
[tex]\[ z = \frac{y}{40} = \frac{13 \log_2{5}}{40} \][/tex]
10. Substitute [tex]\(y\)[/tex] and [tex]\(z\)[/tex] back into the equation to be proven:
Verify:
[tex]\[ \frac{1}{z} = \frac{40}{13 \log_2{5}} \][/tex]
And on the other side:
[tex]\[ \frac{3}{x} + \frac{1}{y} = \frac{3}{\log_2{5}} + \frac{1}{13 \log_2{5}} \][/tex]
11. Simplify the right-hand side:
Find a common denominator and add:
[tex]\[ \frac{3}{\log_2{5}} + \frac{1}{13 \log_2{5}} = \frac{3 \cdot 13 + 1}{13 \log_2{5}} = \frac{40}{13 \log_2{5}} \][/tex]
12. Comparison:
Both sides of the equation are found to be:
[tex]\[ \frac{40}{13 \log_2{5}} = \frac{40}{13 \log_2{5}} \][/tex]
Thus, the equation is consistent and holds true:
[tex]\[ \frac{1}{z} = \frac{3}{x} + \frac{1}{y} \][/tex]
1. Expression for [tex]\(z\)[/tex] in terms of [tex]\(y\)[/tex]:
Given [tex]\(y = 40z\)[/tex], we can write:
[tex]\[ z = \frac{y}{40} \][/tex]
2. Substitute [tex]\(z\)[/tex] into the equation to be proven:
Substitute [tex]\(z\)[/tex] as [tex]\(\frac{y}{40}\)[/tex] in the equation:
[tex]\[ \frac{1}{z} = \frac{40}{y} \][/tex]
3. Rewrite the equation:
Now, we need to prove:
[tex]\[ \frac{40}{y} = \frac{3}{x} + \frac{1}{y} \][/tex]
4. Isolate the common denominator:
Multiply both sides of the equation by [tex]\(y\)[/tex] to clear the fraction:
[tex]\[ 40 = 3 \cdot \frac{y}{x} + 1 \][/tex]
Simplify:
[tex]\[ 40 = 3 \cdot \frac{y}{x} + 1 \][/tex]
5. Rearrange the terms:
Move 1 to the left side:
[tex]\[ 40 - 1 = 3 \cdot \frac{y}{x} \][/tex]
Simplify:
[tex]\[ 39 = 3 \cdot \frac{y}{x} \][/tex]
6. Isolate [tex]\(x\)[/tex]:
Rearrange to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{39}{3} \][/tex]
Simplify:
[tex]\[ \frac{y}{x} = 13 \][/tex]
Hence:
[tex]\[ x = \frac{y}{13} \][/tex]
7. Verify the consistency with the exponential equation:
We have from the given problem:
[tex]\[ 2^x = 5 \][/tex]
Taking the logarithm with base 2 of both sides:
[tex]\[ x = \log_2{5} \][/tex]
8. Match both expressions for [tex]\(x\)[/tex]:
Set the two expressions for [tex]\(x\)[/tex] equal:
[tex]\[ \frac{y}{13} = \log_2{5} \][/tex]
Thus:
[tex]\[ y = 13 \log_2{5} \][/tex]
9. Determine [tex]\(z\)[/tex]:
Substitute [tex]\(y\)[/tex] back into the equation for [tex]\(z\)[/tex]:
[tex]\[ z = \frac{y}{40} = \frac{13 \log_2{5}}{40} \][/tex]
10. Substitute [tex]\(y\)[/tex] and [tex]\(z\)[/tex] back into the equation to be proven:
Verify:
[tex]\[ \frac{1}{z} = \frac{40}{13 \log_2{5}} \][/tex]
And on the other side:
[tex]\[ \frac{3}{x} + \frac{1}{y} = \frac{3}{\log_2{5}} + \frac{1}{13 \log_2{5}} \][/tex]
11. Simplify the right-hand side:
Find a common denominator and add:
[tex]\[ \frac{3}{\log_2{5}} + \frac{1}{13 \log_2{5}} = \frac{3 \cdot 13 + 1}{13 \log_2{5}} = \frac{40}{13 \log_2{5}} \][/tex]
12. Comparison:
Both sides of the equation are found to be:
[tex]\[ \frac{40}{13 \log_2{5}} = \frac{40}{13 \log_2{5}} \][/tex]
Thus, the equation is consistent and holds true:
[tex]\[ \frac{1}{z} = \frac{3}{x} + \frac{1}{y} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.