Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To prove the equation [tex]\(\frac{1}{z} = \frac{3}{x} + \frac{1}{y}\)[/tex] given the relations [tex]\(2^x = 5\)[/tex] and [tex]\(y = 40z\)[/tex], follow these steps:
1. Expression for [tex]\(z\)[/tex] in terms of [tex]\(y\)[/tex]:
Given [tex]\(y = 40z\)[/tex], we can write:
[tex]\[ z = \frac{y}{40} \][/tex]
2. Substitute [tex]\(z\)[/tex] into the equation to be proven:
Substitute [tex]\(z\)[/tex] as [tex]\(\frac{y}{40}\)[/tex] in the equation:
[tex]\[ \frac{1}{z} = \frac{40}{y} \][/tex]
3. Rewrite the equation:
Now, we need to prove:
[tex]\[ \frac{40}{y} = \frac{3}{x} + \frac{1}{y} \][/tex]
4. Isolate the common denominator:
Multiply both sides of the equation by [tex]\(y\)[/tex] to clear the fraction:
[tex]\[ 40 = 3 \cdot \frac{y}{x} + 1 \][/tex]
Simplify:
[tex]\[ 40 = 3 \cdot \frac{y}{x} + 1 \][/tex]
5. Rearrange the terms:
Move 1 to the left side:
[tex]\[ 40 - 1 = 3 \cdot \frac{y}{x} \][/tex]
Simplify:
[tex]\[ 39 = 3 \cdot \frac{y}{x} \][/tex]
6. Isolate [tex]\(x\)[/tex]:
Rearrange to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{39}{3} \][/tex]
Simplify:
[tex]\[ \frac{y}{x} = 13 \][/tex]
Hence:
[tex]\[ x = \frac{y}{13} \][/tex]
7. Verify the consistency with the exponential equation:
We have from the given problem:
[tex]\[ 2^x = 5 \][/tex]
Taking the logarithm with base 2 of both sides:
[tex]\[ x = \log_2{5} \][/tex]
8. Match both expressions for [tex]\(x\)[/tex]:
Set the two expressions for [tex]\(x\)[/tex] equal:
[tex]\[ \frac{y}{13} = \log_2{5} \][/tex]
Thus:
[tex]\[ y = 13 \log_2{5} \][/tex]
9. Determine [tex]\(z\)[/tex]:
Substitute [tex]\(y\)[/tex] back into the equation for [tex]\(z\)[/tex]:
[tex]\[ z = \frac{y}{40} = \frac{13 \log_2{5}}{40} \][/tex]
10. Substitute [tex]\(y\)[/tex] and [tex]\(z\)[/tex] back into the equation to be proven:
Verify:
[tex]\[ \frac{1}{z} = \frac{40}{13 \log_2{5}} \][/tex]
And on the other side:
[tex]\[ \frac{3}{x} + \frac{1}{y} = \frac{3}{\log_2{5}} + \frac{1}{13 \log_2{5}} \][/tex]
11. Simplify the right-hand side:
Find a common denominator and add:
[tex]\[ \frac{3}{\log_2{5}} + \frac{1}{13 \log_2{5}} = \frac{3 \cdot 13 + 1}{13 \log_2{5}} = \frac{40}{13 \log_2{5}} \][/tex]
12. Comparison:
Both sides of the equation are found to be:
[tex]\[ \frac{40}{13 \log_2{5}} = \frac{40}{13 \log_2{5}} \][/tex]
Thus, the equation is consistent and holds true:
[tex]\[ \frac{1}{z} = \frac{3}{x} + \frac{1}{y} \][/tex]
1. Expression for [tex]\(z\)[/tex] in terms of [tex]\(y\)[/tex]:
Given [tex]\(y = 40z\)[/tex], we can write:
[tex]\[ z = \frac{y}{40} \][/tex]
2. Substitute [tex]\(z\)[/tex] into the equation to be proven:
Substitute [tex]\(z\)[/tex] as [tex]\(\frac{y}{40}\)[/tex] in the equation:
[tex]\[ \frac{1}{z} = \frac{40}{y} \][/tex]
3. Rewrite the equation:
Now, we need to prove:
[tex]\[ \frac{40}{y} = \frac{3}{x} + \frac{1}{y} \][/tex]
4. Isolate the common denominator:
Multiply both sides of the equation by [tex]\(y\)[/tex] to clear the fraction:
[tex]\[ 40 = 3 \cdot \frac{y}{x} + 1 \][/tex]
Simplify:
[tex]\[ 40 = 3 \cdot \frac{y}{x} + 1 \][/tex]
5. Rearrange the terms:
Move 1 to the left side:
[tex]\[ 40 - 1 = 3 \cdot \frac{y}{x} \][/tex]
Simplify:
[tex]\[ 39 = 3 \cdot \frac{y}{x} \][/tex]
6. Isolate [tex]\(x\)[/tex]:
Rearrange to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{39}{3} \][/tex]
Simplify:
[tex]\[ \frac{y}{x} = 13 \][/tex]
Hence:
[tex]\[ x = \frac{y}{13} \][/tex]
7. Verify the consistency with the exponential equation:
We have from the given problem:
[tex]\[ 2^x = 5 \][/tex]
Taking the logarithm with base 2 of both sides:
[tex]\[ x = \log_2{5} \][/tex]
8. Match both expressions for [tex]\(x\)[/tex]:
Set the two expressions for [tex]\(x\)[/tex] equal:
[tex]\[ \frac{y}{13} = \log_2{5} \][/tex]
Thus:
[tex]\[ y = 13 \log_2{5} \][/tex]
9. Determine [tex]\(z\)[/tex]:
Substitute [tex]\(y\)[/tex] back into the equation for [tex]\(z\)[/tex]:
[tex]\[ z = \frac{y}{40} = \frac{13 \log_2{5}}{40} \][/tex]
10. Substitute [tex]\(y\)[/tex] and [tex]\(z\)[/tex] back into the equation to be proven:
Verify:
[tex]\[ \frac{1}{z} = \frac{40}{13 \log_2{5}} \][/tex]
And on the other side:
[tex]\[ \frac{3}{x} + \frac{1}{y} = \frac{3}{\log_2{5}} + \frac{1}{13 \log_2{5}} \][/tex]
11. Simplify the right-hand side:
Find a common denominator and add:
[tex]\[ \frac{3}{\log_2{5}} + \frac{1}{13 \log_2{5}} = \frac{3 \cdot 13 + 1}{13 \log_2{5}} = \frac{40}{13 \log_2{5}} \][/tex]
12. Comparison:
Both sides of the equation are found to be:
[tex]\[ \frac{40}{13 \log_2{5}} = \frac{40}{13 \log_2{5}} \][/tex]
Thus, the equation is consistent and holds true:
[tex]\[ \frac{1}{z} = \frac{3}{x} + \frac{1}{y} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.