Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let us analyze each statement given the set [tex]\( A = \{1, 2, 3\} \)[/tex].
### Statement 1: [tex]\( \{1\} \in A \)[/tex]
- Here, [tex]\( \{1\} \)[/tex] is a set containing a single element, the number 1.
- For [tex]\( \{1\} \)[/tex] to be an element of [tex]\( A \)[/tex], the entire set [tex]\( \{1\} \)[/tex] (and not just the element 1) must be present in [tex]\( A \)[/tex].
- In this case, [tex]\( A \)[/tex] consists of the numbers 1, 2, and 3, not the set [tex]\( \{1\} \)[/tex].
- Hence, [tex]\( \{1\} \notin A \)[/tex]. This statement is incorrect.
### Statement 2: [tex]\( 1 \in A \)[/tex]
- This statement checks if the element 1 is a member of the set [tex]\( A \)[/tex].
- Upon examining [tex]\( A \)[/tex], we see that indeed, [tex]\( 1 \)[/tex] is one of the elements in [tex]\( A \)[/tex].
- Therefore, [tex]\( 1 \in A \)[/tex]. This statement is correct.
### Statement 3: [tex]\( \{1, 2\} \in A \)[/tex]
- Here, [tex]\( \{1, 2\} \)[/tex] is a set containing the elements 1 and 2.
- For [tex]\( \{1, 2\} \)[/tex] to be an element of [tex]\( A \)[/tex], the entire set [tex]\( \{1, 2\} \)[/tex] must be present in [tex]\( A \)[/tex].
- Since [tex]\( A \)[/tex] only contains the elements 1, 2, and 3 individually, not the set [tex]\( \{1, 2\} \)[/tex] as a whole, [tex]\( \{1, 2\} \notin A \)[/tex].
- Hence, this statement is incorrect.
### Statement 4: [tex]\( 3 \notin A \)[/tex]
- This statement checks if the element 3 is not a member of the set [tex]\( A \)[/tex].
- Looking at the set [tex]\( A \)[/tex], we see that 3 is indeed one of the elements.
- Thus, [tex]\( 3 \in A \)[/tex], meaning [tex]\( 3 \notin A \)[/tex] is false.
- Therefore, this statement is incorrect.
After evaluating all the statements, the only correct one is:
[tex]\[ \boxed{1 \in A} \][/tex]
### Statement 1: [tex]\( \{1\} \in A \)[/tex]
- Here, [tex]\( \{1\} \)[/tex] is a set containing a single element, the number 1.
- For [tex]\( \{1\} \)[/tex] to be an element of [tex]\( A \)[/tex], the entire set [tex]\( \{1\} \)[/tex] (and not just the element 1) must be present in [tex]\( A \)[/tex].
- In this case, [tex]\( A \)[/tex] consists of the numbers 1, 2, and 3, not the set [tex]\( \{1\} \)[/tex].
- Hence, [tex]\( \{1\} \notin A \)[/tex]. This statement is incorrect.
### Statement 2: [tex]\( 1 \in A \)[/tex]
- This statement checks if the element 1 is a member of the set [tex]\( A \)[/tex].
- Upon examining [tex]\( A \)[/tex], we see that indeed, [tex]\( 1 \)[/tex] is one of the elements in [tex]\( A \)[/tex].
- Therefore, [tex]\( 1 \in A \)[/tex]. This statement is correct.
### Statement 3: [tex]\( \{1, 2\} \in A \)[/tex]
- Here, [tex]\( \{1, 2\} \)[/tex] is a set containing the elements 1 and 2.
- For [tex]\( \{1, 2\} \)[/tex] to be an element of [tex]\( A \)[/tex], the entire set [tex]\( \{1, 2\} \)[/tex] must be present in [tex]\( A \)[/tex].
- Since [tex]\( A \)[/tex] only contains the elements 1, 2, and 3 individually, not the set [tex]\( \{1, 2\} \)[/tex] as a whole, [tex]\( \{1, 2\} \notin A \)[/tex].
- Hence, this statement is incorrect.
### Statement 4: [tex]\( 3 \notin A \)[/tex]
- This statement checks if the element 3 is not a member of the set [tex]\( A \)[/tex].
- Looking at the set [tex]\( A \)[/tex], we see that 3 is indeed one of the elements.
- Thus, [tex]\( 3 \in A \)[/tex], meaning [tex]\( 3 \notin A \)[/tex] is false.
- Therefore, this statement is incorrect.
After evaluating all the statements, the only correct one is:
[tex]\[ \boxed{1 \in A} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.