Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let’s work through this problem step-by-step.
The given equation of the line [tex]\( AB \)[/tex] is:
[tex]\[ y = 5x + 1 \][/tex]
Lines that are parallel to each other have the same slope. The equation of a line in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
From the equation [tex]\( y = 5x + 1 \)[/tex], we can see that the slope [tex]\( m \)[/tex] is:
[tex]\[ m = 5 \][/tex]
Since the new line is parallel to the given line, it will have the same slope. Therefore, the slope of the new line will also be:
[tex]\[ m = 5 \][/tex]
Now, we need to find the y-intercept[tex]\( b \)[/tex] of the new line. We know that the line passes through the point [tex]\( (4, 5) \)[/tex]. We can substitute [tex]\( x = 4 \)[/tex] and [tex]\( y = 5 \)[/tex] into the slope-intercept form [tex]\( y = 5x + b \)[/tex] to find [tex]\( b \)[/tex].
Substitute the values:
[tex]\[ 5 = 5(4) + b \][/tex]
Simplify the equation:
[tex]\[ 5 = 20 + b \][/tex]
Solve for [tex]\( b \)[/tex]:
[tex]\[ b = 5 - 20 \][/tex]
[tex]\[ b = -15 \][/tex]
Thus, the y-intercept [tex]\( b \)[/tex] is:
[tex]\[ b = -15 \][/tex]
Therefore, the equation of the line parallel to [tex]\( AB \)[/tex] and passing through the point [tex]\( (4, 5) \)[/tex] is:
[tex]\[ y = 5x - 15 \][/tex]
So, the correct choice is:
[tex]\[ y = 5x - 15 \][/tex]
The given equation of the line [tex]\( AB \)[/tex] is:
[tex]\[ y = 5x + 1 \][/tex]
Lines that are parallel to each other have the same slope. The equation of a line in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
From the equation [tex]\( y = 5x + 1 \)[/tex], we can see that the slope [tex]\( m \)[/tex] is:
[tex]\[ m = 5 \][/tex]
Since the new line is parallel to the given line, it will have the same slope. Therefore, the slope of the new line will also be:
[tex]\[ m = 5 \][/tex]
Now, we need to find the y-intercept[tex]\( b \)[/tex] of the new line. We know that the line passes through the point [tex]\( (4, 5) \)[/tex]. We can substitute [tex]\( x = 4 \)[/tex] and [tex]\( y = 5 \)[/tex] into the slope-intercept form [tex]\( y = 5x + b \)[/tex] to find [tex]\( b \)[/tex].
Substitute the values:
[tex]\[ 5 = 5(4) + b \][/tex]
Simplify the equation:
[tex]\[ 5 = 20 + b \][/tex]
Solve for [tex]\( b \)[/tex]:
[tex]\[ b = 5 - 20 \][/tex]
[tex]\[ b = -15 \][/tex]
Thus, the y-intercept [tex]\( b \)[/tex] is:
[tex]\[ b = -15 \][/tex]
Therefore, the equation of the line parallel to [tex]\( AB \)[/tex] and passing through the point [tex]\( (4, 5) \)[/tex] is:
[tex]\[ y = 5x - 15 \][/tex]
So, the correct choice is:
[tex]\[ y = 5x - 15 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.