Answered

Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Calculate the change in the kinetic energy (KE) of the bottle when the mass is increased. Use the formula [tex]KE = \frac{1}{2} mv^2[/tex], where [tex]m[/tex] is the mass and [tex]v[/tex] is the speed (velocity). Assume that the speed of the soda bottle falling from a height of [tex]0.8 m[/tex] will be [tex]4 \, m/s[/tex], and use this speed for each calculation.

Record your calculations in Table A of your Student Guide.

When the mass of the bottle is [tex]0.125 \, kg[/tex], the [tex]KE[/tex] is
[tex]\square \, kg \cdot m^2 / s^2[/tex].

When the mass of the bottle is [tex]0.250 \, kg[/tex], the [tex]KE[/tex] is
[tex]\square \, kg \cdot m^2 / s^2[/tex].

When the mass of the bottle is [tex]0.375 \, kg[/tex], the [tex]KE[/tex] is
[tex]\square \, kg \cdot m^2 / s^2[/tex].

When the mass of the bottle is [tex]0.500 \, kg[/tex], the [tex]KE[/tex] is
[tex]\square \, kg \cdot m^2 / s^2[/tex].

Sagot :

To solve this problem, we will use the given formula for kinetic energy:

[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]

where:
- [tex]\( KE \)[/tex] is the kinetic energy,
- [tex]\( m \)[/tex] is the mass of the bottle,
- [tex]\( v \)[/tex] is the speed of the bottle.

We are given that the speed [tex]\( v \)[/tex] of the soda bottle is [tex]\( 4 \, \text{m/s} \)[/tex], and we need to calculate the kinetic energy for various masses.

### Step-by-Step Calculations

1. When the mass of the bottle is [tex]\( 0.125 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.125 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.125 \, \times 16 \][/tex]
[tex]\[ KE = 1.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]

2. When the mass of the bottle is [tex]\( 0.250 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.250 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.250 \, \times 16 \][/tex]
[tex]\[ KE = 2.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]

3. When the mass of the bottle is [tex]\( 0.375 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.375 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.375 \, \times 16 \][/tex]
[tex]\[ KE = 3.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]

4. When the mass of the bottle is [tex]\( 0.500 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.500 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.500 \, \times 16 \][/tex]
[tex]\[ KE = 4.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]

### Results Summary

- When the mass of the bottle is [tex]\( 0.125 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 1.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
- When the mass of the bottle is [tex]\( 0.250 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 2.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
- When the mass of the bottle is [tex]\( 0.375 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 3.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
- When the mass of the bottle is [tex]\( 0.500 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 4.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].

By these calculations, we can observe how the kinetic energy of the bottle changes as its mass increases.