Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's solve the equation step-by-step.
We are given the equation:
[tex]\[ w(w-2)(6w + 5) = 0 \][/tex]
To find the solutions, we need to determine the values of [tex]\( w \)[/tex] that make the equation equal to zero. This is a factored polynomial equation, and we can use the Zero Product Property, which states that if a product of factors is zero, then at least one of the factors must be zero.
Let's consider each factor individually:
1. First factor: [tex]\( w \)[/tex]
We set the first factor equal to zero:
[tex]\[ w = 0 \][/tex]
Therefore, one solution is:
[tex]\[ w = 0 \][/tex]
2. Second factor: [tex]\( w - 2 \)[/tex]
We set the second factor equal to zero:
[tex]\[ w - 2 = 0 \][/tex]
Solving for [tex]\( w \)[/tex], we get:
[tex]\[ w = 2 \][/tex]
Therefore, another solution is:
[tex]\[ w = 2 \][/tex]
3. Third factor: [tex]\( 6w + 5 \)[/tex]
We set the third factor equal to zero:
[tex]\[ 6w + 5 = 0 \][/tex]
Solving for [tex]\( w \)[/tex], we subtract 5 from both sides:
[tex]\[ 6w = -5 \][/tex]
Then, we divide both sides by 6:
[tex]\[ w = -\frac{5}{6} \][/tex]
Therefore, the third solution is:
[tex]\[ w = -\frac{5}{6} \][/tex]
Putting it all together, the solutions to the equation [tex]\( w(w-2)(6w+5) = 0 \)[/tex] are:
[tex]\[ w = 0, \quad w = 2, \quad \text{and} \quad w = -\frac{5}{6} \][/tex]
Hence, the complete set of solutions is:
[tex]\[ \boxed{[-\frac{5}{6}, 0, 2]} \][/tex]
We are given the equation:
[tex]\[ w(w-2)(6w + 5) = 0 \][/tex]
To find the solutions, we need to determine the values of [tex]\( w \)[/tex] that make the equation equal to zero. This is a factored polynomial equation, and we can use the Zero Product Property, which states that if a product of factors is zero, then at least one of the factors must be zero.
Let's consider each factor individually:
1. First factor: [tex]\( w \)[/tex]
We set the first factor equal to zero:
[tex]\[ w = 0 \][/tex]
Therefore, one solution is:
[tex]\[ w = 0 \][/tex]
2. Second factor: [tex]\( w - 2 \)[/tex]
We set the second factor equal to zero:
[tex]\[ w - 2 = 0 \][/tex]
Solving for [tex]\( w \)[/tex], we get:
[tex]\[ w = 2 \][/tex]
Therefore, another solution is:
[tex]\[ w = 2 \][/tex]
3. Third factor: [tex]\( 6w + 5 \)[/tex]
We set the third factor equal to zero:
[tex]\[ 6w + 5 = 0 \][/tex]
Solving for [tex]\( w \)[/tex], we subtract 5 from both sides:
[tex]\[ 6w = -5 \][/tex]
Then, we divide both sides by 6:
[tex]\[ w = -\frac{5}{6} \][/tex]
Therefore, the third solution is:
[tex]\[ w = -\frac{5}{6} \][/tex]
Putting it all together, the solutions to the equation [tex]\( w(w-2)(6w+5) = 0 \)[/tex] are:
[tex]\[ w = 0, \quad w = 2, \quad \text{and} \quad w = -\frac{5}{6} \][/tex]
Hence, the complete set of solutions is:
[tex]\[ \boxed{[-\frac{5}{6}, 0, 2]} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.