Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the equation [tex]\(-5x(7x - 4)(3x + 1)^2 = 0\)[/tex], we need to factorize and solve for [tex]\(x\)[/tex]. Let's break it down step-by-step.
### Step 1: Understand the Equation
The equation is [tex]\(-5x(7x - 4)(3x + 1)^2 = 0\)[/tex]. This equation is a product of three factors: [tex]\(-5x\)[/tex], [tex]\((7x - 4)\)[/tex], and [tex]\((3x + 1)^2\)[/tex].
### Step 2: Apply the Zero Product Property
According to the Zero Product Property, if a product of several factors is zero, then at least one of the factors must be zero. Thus, we can set each factor to zero and solve for [tex]\(x\)[/tex].
1. [tex]\(-5x = 0\)[/tex]
2. [tex]\(7x - 4 = 0\)[/tex]
3. [tex]\((3x + 1)^2 = 0\)[/tex]
### Step 3: Solve Each Factor Individually
#### Factor 1: [tex]\(-5x = 0\)[/tex]
To solve for [tex]\(x\)[/tex], we divide both sides by [tex]\(-5\)[/tex]:
[tex]\[ x = 0 \][/tex]
#### Factor 2: [tex]\(7x - 4 = 0\)[/tex]
To solve for [tex]\(x\)[/tex], we isolate [tex]\(x\)[/tex]:
[tex]\[ 7x - 4 = 0 \\ 7x = 4 \\ x = \frac{4}{7} \][/tex]
#### Factor 3: [tex]\((3x + 1)^2 = 0\)[/tex]
Since [tex]\((3x + 1)^2\)[/tex] is a square term, it is zero when the term inside the square is zero:
[tex]\[ 3x + 1 = 0 \\ 3x = -1 \\ x = -\frac{1}{3} \][/tex]
### Step 4: Compile the Solutions
The solutions to the equation [tex]\(-5x(7x - 4)(3x + 1)^2 = 0\)[/tex] are:
[tex]\[ x = 0, \quad x = \frac{4}{7}, \quad x = -\frac{1}{3} \][/tex]
### Conclusion
The values of [tex]\(x\)[/tex] that satisfy the equation [tex]\(-5x(7x - 4)(3x + 1)^2 = 0\)[/tex] are:
[tex]\[ x = 0, \quad x = \frac{4}{7}, \quad x = -\frac{1}{3} \][/tex]
These are the points where the given equation equals zero.
### Step 1: Understand the Equation
The equation is [tex]\(-5x(7x - 4)(3x + 1)^2 = 0\)[/tex]. This equation is a product of three factors: [tex]\(-5x\)[/tex], [tex]\((7x - 4)\)[/tex], and [tex]\((3x + 1)^2\)[/tex].
### Step 2: Apply the Zero Product Property
According to the Zero Product Property, if a product of several factors is zero, then at least one of the factors must be zero. Thus, we can set each factor to zero and solve for [tex]\(x\)[/tex].
1. [tex]\(-5x = 0\)[/tex]
2. [tex]\(7x - 4 = 0\)[/tex]
3. [tex]\((3x + 1)^2 = 0\)[/tex]
### Step 3: Solve Each Factor Individually
#### Factor 1: [tex]\(-5x = 0\)[/tex]
To solve for [tex]\(x\)[/tex], we divide both sides by [tex]\(-5\)[/tex]:
[tex]\[ x = 0 \][/tex]
#### Factor 2: [tex]\(7x - 4 = 0\)[/tex]
To solve for [tex]\(x\)[/tex], we isolate [tex]\(x\)[/tex]:
[tex]\[ 7x - 4 = 0 \\ 7x = 4 \\ x = \frac{4}{7} \][/tex]
#### Factor 3: [tex]\((3x + 1)^2 = 0\)[/tex]
Since [tex]\((3x + 1)^2\)[/tex] is a square term, it is zero when the term inside the square is zero:
[tex]\[ 3x + 1 = 0 \\ 3x = -1 \\ x = -\frac{1}{3} \][/tex]
### Step 4: Compile the Solutions
The solutions to the equation [tex]\(-5x(7x - 4)(3x + 1)^2 = 0\)[/tex] are:
[tex]\[ x = 0, \quad x = \frac{4}{7}, \quad x = -\frac{1}{3} \][/tex]
### Conclusion
The values of [tex]\(x\)[/tex] that satisfy the equation [tex]\(-5x(7x - 4)(3x + 1)^2 = 0\)[/tex] are:
[tex]\[ x = 0, \quad x = \frac{4}{7}, \quad x = -\frac{1}{3} \][/tex]
These are the points where the given equation equals zero.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.