Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's solve the problem step-by-step.
We are given:
- Mass ([tex]\( m \)[/tex]) of the dog: [tex]\( 40 \, kg \)[/tex]
- Potential energy ([tex]\( PE \)[/tex]): [tex]\( 1568 \, J \)[/tex]
- Acceleration due to gravity ([tex]\( g \)[/tex]): [tex]\( 9.8 \, m/s^2 \)[/tex]
We need to find the height ([tex]\( h \)[/tex]) of the hillside.
The formula for potential energy is:
[tex]\[ PE = mgh \][/tex]
We can rearrange this formula to solve for height ([tex]\( h \)[/tex]):
[tex]\[ h = \frac{PE}{mg} \][/tex]
Let's plug in the values:
[tex]\[ h = \frac{1568 \, J}{40 \, kg \times 9.8 \, m/s^2} \][/tex]
Next, let's simplify the expression:
[tex]\[ h = \frac{1568}{40 \times 9.8} \][/tex]
Now, we compute the denominator first:
[tex]\[ 40 \times 9.8 = 392 \][/tex]
Then, divide the potential energy by this product:
[tex]\[ h = \frac{1568}{392} \][/tex]
Finally:
[tex]\[ h = 4.0 \, m \][/tex]
Therefore, the height of the hillside is:
[tex]\[ \boxed{4.0 \, m} \][/tex]
So, the correct answer is:
[tex]\[ 4.0 \, m \][/tex]
We are given:
- Mass ([tex]\( m \)[/tex]) of the dog: [tex]\( 40 \, kg \)[/tex]
- Potential energy ([tex]\( PE \)[/tex]): [tex]\( 1568 \, J \)[/tex]
- Acceleration due to gravity ([tex]\( g \)[/tex]): [tex]\( 9.8 \, m/s^2 \)[/tex]
We need to find the height ([tex]\( h \)[/tex]) of the hillside.
The formula for potential energy is:
[tex]\[ PE = mgh \][/tex]
We can rearrange this formula to solve for height ([tex]\( h \)[/tex]):
[tex]\[ h = \frac{PE}{mg} \][/tex]
Let's plug in the values:
[tex]\[ h = \frac{1568 \, J}{40 \, kg \times 9.8 \, m/s^2} \][/tex]
Next, let's simplify the expression:
[tex]\[ h = \frac{1568}{40 \times 9.8} \][/tex]
Now, we compute the denominator first:
[tex]\[ 40 \times 9.8 = 392 \][/tex]
Then, divide the potential energy by this product:
[tex]\[ h = \frac{1568}{392} \][/tex]
Finally:
[tex]\[ h = 4.0 \, m \][/tex]
Therefore, the height of the hillside is:
[tex]\[ \boxed{4.0 \, m} \][/tex]
So, the correct answer is:
[tex]\[ 4.0 \, m \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.