Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve this problem, let's first set up an equation based on the given information.
We know:
- The length [tex]\( L \)[/tex] of the rectangle is [tex]\( 5 \)[/tex] yards more than twice the width [tex]\( x \)[/tex].
- The area [tex]\( A \)[/tex] of the rectangle is [tex]\( 348 \)[/tex] square yards.
This gives us the following relationships:
1. [tex]\( L = 2x + 5 \)[/tex]
2. [tex]\( A = L \cdot x \)[/tex]
3. Plugging in the given area, we get [tex]\( 348 = (2x + 5) \cdot x \)[/tex]
Let's solve for [tex]\( x \)[/tex]:
1. Start with the equation [tex]\( 348 = (2x + 5) \cdot x \)[/tex].
2. Distribute [tex]\( x \)[/tex] on the right-hand side: [tex]\( 348 = 2x^2 + 5x \)[/tex].
3. Rewrite the equation in standard quadratic form: [tex]\( 2x^2 + 5x - 348 = 0 \)[/tex].
Next, we solve the quadratic equation [tex]\( 2x^2 + 5x - 348 = 0 \)[/tex].
The solutions to this quadratic equation are:
[tex]\[ x_1 = -\frac{29}{2} \][/tex]
[tex]\[ x_2 = 12 \][/tex]
Next, we need to find the corresponding lengths:
For [tex]\( x = -\frac{29}{2} \)[/tex]:
[tex]\[ L = 2x + 5 = 2\left(-\frac{29}{2}\right) + 5 = -29 + 5 = -24 \][/tex]
For [tex]\( x = 12 \)[/tex]:
[tex]\[ L = 2x + 5 = 2 \cdot 12 + 5 = 24 + 5 = 29 \][/tex]
Thus, the width and corresponding length for the rectangle based on the solutions are:
- Width [tex]\( x = -\frac{29}{2} \)[/tex] and length [tex]\( L = -24 \)[/tex]
- Width [tex]\( x = 12 \)[/tex] and length [tex]\( L = 29 \)[/tex]
Only the positive dimensions make physical sense in the context of this problem. Therefore, the valid solution is:
- Width [tex]\( 12 \)[/tex] yards
- Length [tex]\( 29 \)[/tex] yards
We know:
- The length [tex]\( L \)[/tex] of the rectangle is [tex]\( 5 \)[/tex] yards more than twice the width [tex]\( x \)[/tex].
- The area [tex]\( A \)[/tex] of the rectangle is [tex]\( 348 \)[/tex] square yards.
This gives us the following relationships:
1. [tex]\( L = 2x + 5 \)[/tex]
2. [tex]\( A = L \cdot x \)[/tex]
3. Plugging in the given area, we get [tex]\( 348 = (2x + 5) \cdot x \)[/tex]
Let's solve for [tex]\( x \)[/tex]:
1. Start with the equation [tex]\( 348 = (2x + 5) \cdot x \)[/tex].
2. Distribute [tex]\( x \)[/tex] on the right-hand side: [tex]\( 348 = 2x^2 + 5x \)[/tex].
3. Rewrite the equation in standard quadratic form: [tex]\( 2x^2 + 5x - 348 = 0 \)[/tex].
Next, we solve the quadratic equation [tex]\( 2x^2 + 5x - 348 = 0 \)[/tex].
The solutions to this quadratic equation are:
[tex]\[ x_1 = -\frac{29}{2} \][/tex]
[tex]\[ x_2 = 12 \][/tex]
Next, we need to find the corresponding lengths:
For [tex]\( x = -\frac{29}{2} \)[/tex]:
[tex]\[ L = 2x + 5 = 2\left(-\frac{29}{2}\right) + 5 = -29 + 5 = -24 \][/tex]
For [tex]\( x = 12 \)[/tex]:
[tex]\[ L = 2x + 5 = 2 \cdot 12 + 5 = 24 + 5 = 29 \][/tex]
Thus, the width and corresponding length for the rectangle based on the solutions are:
- Width [tex]\( x = -\frac{29}{2} \)[/tex] and length [tex]\( L = -24 \)[/tex]
- Width [tex]\( x = 12 \)[/tex] and length [tex]\( L = 29 \)[/tex]
Only the positive dimensions make physical sense in the context of this problem. Therefore, the valid solution is:
- Width [tex]\( 12 \)[/tex] yards
- Length [tex]\( 29 \)[/tex] yards
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.