Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve this problem, let's first set up an equation based on the given information.
We know:
- The length [tex]\( L \)[/tex] of the rectangle is [tex]\( 5 \)[/tex] yards more than twice the width [tex]\( x \)[/tex].
- The area [tex]\( A \)[/tex] of the rectangle is [tex]\( 348 \)[/tex] square yards.
This gives us the following relationships:
1. [tex]\( L = 2x + 5 \)[/tex]
2. [tex]\( A = L \cdot x \)[/tex]
3. Plugging in the given area, we get [tex]\( 348 = (2x + 5) \cdot x \)[/tex]
Let's solve for [tex]\( x \)[/tex]:
1. Start with the equation [tex]\( 348 = (2x + 5) \cdot x \)[/tex].
2. Distribute [tex]\( x \)[/tex] on the right-hand side: [tex]\( 348 = 2x^2 + 5x \)[/tex].
3. Rewrite the equation in standard quadratic form: [tex]\( 2x^2 + 5x - 348 = 0 \)[/tex].
Next, we solve the quadratic equation [tex]\( 2x^2 + 5x - 348 = 0 \)[/tex].
The solutions to this quadratic equation are:
[tex]\[ x_1 = -\frac{29}{2} \][/tex]
[tex]\[ x_2 = 12 \][/tex]
Next, we need to find the corresponding lengths:
For [tex]\( x = -\frac{29}{2} \)[/tex]:
[tex]\[ L = 2x + 5 = 2\left(-\frac{29}{2}\right) + 5 = -29 + 5 = -24 \][/tex]
For [tex]\( x = 12 \)[/tex]:
[tex]\[ L = 2x + 5 = 2 \cdot 12 + 5 = 24 + 5 = 29 \][/tex]
Thus, the width and corresponding length for the rectangle based on the solutions are:
- Width [tex]\( x = -\frac{29}{2} \)[/tex] and length [tex]\( L = -24 \)[/tex]
- Width [tex]\( x = 12 \)[/tex] and length [tex]\( L = 29 \)[/tex]
Only the positive dimensions make physical sense in the context of this problem. Therefore, the valid solution is:
- Width [tex]\( 12 \)[/tex] yards
- Length [tex]\( 29 \)[/tex] yards
We know:
- The length [tex]\( L \)[/tex] of the rectangle is [tex]\( 5 \)[/tex] yards more than twice the width [tex]\( x \)[/tex].
- The area [tex]\( A \)[/tex] of the rectangle is [tex]\( 348 \)[/tex] square yards.
This gives us the following relationships:
1. [tex]\( L = 2x + 5 \)[/tex]
2. [tex]\( A = L \cdot x \)[/tex]
3. Plugging in the given area, we get [tex]\( 348 = (2x + 5) \cdot x \)[/tex]
Let's solve for [tex]\( x \)[/tex]:
1. Start with the equation [tex]\( 348 = (2x + 5) \cdot x \)[/tex].
2. Distribute [tex]\( x \)[/tex] on the right-hand side: [tex]\( 348 = 2x^2 + 5x \)[/tex].
3. Rewrite the equation in standard quadratic form: [tex]\( 2x^2 + 5x - 348 = 0 \)[/tex].
Next, we solve the quadratic equation [tex]\( 2x^2 + 5x - 348 = 0 \)[/tex].
The solutions to this quadratic equation are:
[tex]\[ x_1 = -\frac{29}{2} \][/tex]
[tex]\[ x_2 = 12 \][/tex]
Next, we need to find the corresponding lengths:
For [tex]\( x = -\frac{29}{2} \)[/tex]:
[tex]\[ L = 2x + 5 = 2\left(-\frac{29}{2}\right) + 5 = -29 + 5 = -24 \][/tex]
For [tex]\( x = 12 \)[/tex]:
[tex]\[ L = 2x + 5 = 2 \cdot 12 + 5 = 24 + 5 = 29 \][/tex]
Thus, the width and corresponding length for the rectangle based on the solutions are:
- Width [tex]\( x = -\frac{29}{2} \)[/tex] and length [tex]\( L = -24 \)[/tex]
- Width [tex]\( x = 12 \)[/tex] and length [tex]\( L = 29 \)[/tex]
Only the positive dimensions make physical sense in the context of this problem. Therefore, the valid solution is:
- Width [tex]\( 12 \)[/tex] yards
- Length [tex]\( 29 \)[/tex] yards
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.