Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

The length of a rectangle is [tex]5 \text{ yd}[/tex] more than twice the width [tex]x[/tex]. The area is [tex]348 \text{ yd}^2[/tex].

Sagot :

To solve this problem, let's first set up an equation based on the given information.

We know:
- The length [tex]\( L \)[/tex] of the rectangle is [tex]\( 5 \)[/tex] yards more than twice the width [tex]\( x \)[/tex].
- The area [tex]\( A \)[/tex] of the rectangle is [tex]\( 348 \)[/tex] square yards.

This gives us the following relationships:
1. [tex]\( L = 2x + 5 \)[/tex]
2. [tex]\( A = L \cdot x \)[/tex]
3. Plugging in the given area, we get [tex]\( 348 = (2x + 5) \cdot x \)[/tex]

Let's solve for [tex]\( x \)[/tex]:

1. Start with the equation [tex]\( 348 = (2x + 5) \cdot x \)[/tex].
2. Distribute [tex]\( x \)[/tex] on the right-hand side: [tex]\( 348 = 2x^2 + 5x \)[/tex].
3. Rewrite the equation in standard quadratic form: [tex]\( 2x^2 + 5x - 348 = 0 \)[/tex].

Next, we solve the quadratic equation [tex]\( 2x^2 + 5x - 348 = 0 \)[/tex].

The solutions to this quadratic equation are:
[tex]\[ x_1 = -\frac{29}{2} \][/tex]
[tex]\[ x_2 = 12 \][/tex]

Next, we need to find the corresponding lengths:

For [tex]\( x = -\frac{29}{2} \)[/tex]:
[tex]\[ L = 2x + 5 = 2\left(-\frac{29}{2}\right) + 5 = -29 + 5 = -24 \][/tex]

For [tex]\( x = 12 \)[/tex]:
[tex]\[ L = 2x + 5 = 2 \cdot 12 + 5 = 24 + 5 = 29 \][/tex]

Thus, the width and corresponding length for the rectangle based on the solutions are:
- Width [tex]\( x = -\frac{29}{2} \)[/tex] and length [tex]\( L = -24 \)[/tex]
- Width [tex]\( x = 12 \)[/tex] and length [tex]\( L = 29 \)[/tex]

Only the positive dimensions make physical sense in the context of this problem. Therefore, the valid solution is:
- Width [tex]\( 12 \)[/tex] yards
- Length [tex]\( 29 \)[/tex] yards