Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
### Solution
#### a. Average Volume of Titration
First, we need to tabulate the titration table and calculate the average volume of the titrations.
Given:
- First titration volume: [tex]\(20.60 \, \text{cm}^3\)[/tex]
- Second titration volume: [tex]\(20.50 \, \text{cm}^3\)[/tex]
To find the average volume:
[tex]\[ \text{Average volume} = \frac{{20.60 \, \text{cm}^3 + 20.50 \, \text{cm}^3}}{2} = 20.55 \, \text{cm}^3 \][/tex]
#### b.i. Concentration of Solution B in [tex]\(\text{mol}/\text{dm}^3\)[/tex]
Given that solution B contains [tex]\(24 \, \text{g}\)[/tex] of NaOH per [tex]\(\text{dm}^3\)[/tex], we need to convert this to [tex]\(\text{mol}/\text{dm}^3\)[/tex].
Molar mass of NaOH:
[tex]\[ \text{Na} = 23 \quad \text{O} = 16 \quad \text{H} = 1 \][/tex]
[tex]\[ \text{Molar mass of NaOH} = 23 + 16 + 1 = 40 \, \text{g/mol} \][/tex]
Concentration in [tex]\(\text{mol}/\text{dm}^3\)[/tex]:
[tex]\[ \text{Concentration of NaOH} = \frac{24 \, \text{g/dm}^3}{40 \, \text{g/mol}} = 0.6 \, \text{mol/dm}^3 \][/tex]
#### b.ii. Concentration of Pure Acid in Solution A in [tex]\(\text{g/dm}^3\)[/tex]
Moles of NaOH used:
Given that [tex]\(25 \, \text{cm}^3\)[/tex] (or [tex]\(0.025 \, \text{dm}^3\)[/tex]) of NaOH solution was used:
[tex]\[ \text{Moles of NaOH} = \text{Concentration} \times \text{Volume} = 0.6 \, \text{mol/dm}^3 \times 0.025 \, \text{dm}^3 = 0.015 \, \text{mol} \][/tex]
From the balanced chemical equation:
[tex]\[ 2 \, \text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2 \, \text{H}_2\text{O} \][/tex]
1 mole of [tex]\(\text{H}_2\text{SO}_4\)[/tex] reacts with 2 moles of [tex]\(\text{NaOH}\)[/tex], thus:
[tex]\[ \text{Moles of} \, \text{H}_2\text{SO}_4 = \frac{\text{Moles of NaOH}}{2} = \frac{0.015}{2} = 0.0075 \, \text{mol} \][/tex]
Volume of [tex]\(\text{H}_2\text{SO}_4\)[/tex] solution used:
[tex]\[ 20.55 \, \text{cm}^3 = 0.02055 \, \text{dm}^3 \][/tex]
Concentration of pure [tex]\(\text{H}_2\text{SO}_4\)[/tex] in solution A:
Using the moles we just calculated:
[tex]\[ \text{Concentration of pure} \, \text{H}_2\text{SO}_4 = \frac{\text{Moles}}{\text{Volume}} = \frac{0.0075 \, \text{mol}}{0.02055 \, \text{dm}^3} = 0.365 \, \text{mol/dm}^3 \][/tex]
Then convert this into [tex]\(\text{g/dm}^3\)[/tex].
Molar mass of [tex]\(\text{H}_2\text{SO}_4\)[/tex]:
[tex]\[ \text{H} = 1, \text{S} = 32, \text{O} = 16 \quad \Rightarrow \quad \text{Molar mass of} \, \text{H}_2\text{SO}_4 = 2 \times 1 + 32 + 4 \times 16 = 98 \, \text{g/mol} \][/tex]
Concentration of pure [tex]\(\text{H}_2\text{SO}_4\)[/tex] in g/dm}^3:
[tex]\[ \text{Concentration of pure} \, \text{H}_2\text{SO}_4 = 0.365 \, \text{mol/dm}^3 \times 98 \, \text{g/mol} = 35.77 \, \text{g/dm}^3 \][/tex]
#### b.iii. Percentage Purity of Acid in Solution A
Given that solution A initially contains [tex]\(37.60 \, \text{g/dm}^3\)[/tex] of impure [tex]\(\text{H}_2\text{SO}_4\)[/tex], the percentage purity is calculated as:
[tex]\[ \text{Percentage purity} = \left( \frac{\text{Concentration of pure \(\text{H}_2\text{SO}_4\) in \(\text{g/dm}^3\)}}{\text{Concentration of impure \(\text{H}_2\text{SO}_4\) in \(\text{g/dm}^3\)}} \right) \times 100 = \left( \frac{35.77}{37.60} \right) \times 100 = 95.12\% \][/tex]
### Summary of Results
1. Average volume of acid used: [tex]\(20.55 \, \text{cm}^3\)[/tex]
2. Concentration of solution B: [tex]\(0.6 \, \text{mol/dm}^3\)[/tex]
3. Concentration of pure acid in solution A: [tex]\(35.77 \, \text{g/dm}^3\)[/tex]
4. Percentage purity of acid in solution A: [tex]\(95.12\%\)[/tex]
#### a. Average Volume of Titration
First, we need to tabulate the titration table and calculate the average volume of the titrations.
Given:
- First titration volume: [tex]\(20.60 \, \text{cm}^3\)[/tex]
- Second titration volume: [tex]\(20.50 \, \text{cm}^3\)[/tex]
To find the average volume:
[tex]\[ \text{Average volume} = \frac{{20.60 \, \text{cm}^3 + 20.50 \, \text{cm}^3}}{2} = 20.55 \, \text{cm}^3 \][/tex]
#### b.i. Concentration of Solution B in [tex]\(\text{mol}/\text{dm}^3\)[/tex]
Given that solution B contains [tex]\(24 \, \text{g}\)[/tex] of NaOH per [tex]\(\text{dm}^3\)[/tex], we need to convert this to [tex]\(\text{mol}/\text{dm}^3\)[/tex].
Molar mass of NaOH:
[tex]\[ \text{Na} = 23 \quad \text{O} = 16 \quad \text{H} = 1 \][/tex]
[tex]\[ \text{Molar mass of NaOH} = 23 + 16 + 1 = 40 \, \text{g/mol} \][/tex]
Concentration in [tex]\(\text{mol}/\text{dm}^3\)[/tex]:
[tex]\[ \text{Concentration of NaOH} = \frac{24 \, \text{g/dm}^3}{40 \, \text{g/mol}} = 0.6 \, \text{mol/dm}^3 \][/tex]
#### b.ii. Concentration of Pure Acid in Solution A in [tex]\(\text{g/dm}^3\)[/tex]
Moles of NaOH used:
Given that [tex]\(25 \, \text{cm}^3\)[/tex] (or [tex]\(0.025 \, \text{dm}^3\)[/tex]) of NaOH solution was used:
[tex]\[ \text{Moles of NaOH} = \text{Concentration} \times \text{Volume} = 0.6 \, \text{mol/dm}^3 \times 0.025 \, \text{dm}^3 = 0.015 \, \text{mol} \][/tex]
From the balanced chemical equation:
[tex]\[ 2 \, \text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2 \, \text{H}_2\text{O} \][/tex]
1 mole of [tex]\(\text{H}_2\text{SO}_4\)[/tex] reacts with 2 moles of [tex]\(\text{NaOH}\)[/tex], thus:
[tex]\[ \text{Moles of} \, \text{H}_2\text{SO}_4 = \frac{\text{Moles of NaOH}}{2} = \frac{0.015}{2} = 0.0075 \, \text{mol} \][/tex]
Volume of [tex]\(\text{H}_2\text{SO}_4\)[/tex] solution used:
[tex]\[ 20.55 \, \text{cm}^3 = 0.02055 \, \text{dm}^3 \][/tex]
Concentration of pure [tex]\(\text{H}_2\text{SO}_4\)[/tex] in solution A:
Using the moles we just calculated:
[tex]\[ \text{Concentration of pure} \, \text{H}_2\text{SO}_4 = \frac{\text{Moles}}{\text{Volume}} = \frac{0.0075 \, \text{mol}}{0.02055 \, \text{dm}^3} = 0.365 \, \text{mol/dm}^3 \][/tex]
Then convert this into [tex]\(\text{g/dm}^3\)[/tex].
Molar mass of [tex]\(\text{H}_2\text{SO}_4\)[/tex]:
[tex]\[ \text{H} = 1, \text{S} = 32, \text{O} = 16 \quad \Rightarrow \quad \text{Molar mass of} \, \text{H}_2\text{SO}_4 = 2 \times 1 + 32 + 4 \times 16 = 98 \, \text{g/mol} \][/tex]
Concentration of pure [tex]\(\text{H}_2\text{SO}_4\)[/tex] in g/dm}^3:
[tex]\[ \text{Concentration of pure} \, \text{H}_2\text{SO}_4 = 0.365 \, \text{mol/dm}^3 \times 98 \, \text{g/mol} = 35.77 \, \text{g/dm}^3 \][/tex]
#### b.iii. Percentage Purity of Acid in Solution A
Given that solution A initially contains [tex]\(37.60 \, \text{g/dm}^3\)[/tex] of impure [tex]\(\text{H}_2\text{SO}_4\)[/tex], the percentage purity is calculated as:
[tex]\[ \text{Percentage purity} = \left( \frac{\text{Concentration of pure \(\text{H}_2\text{SO}_4\) in \(\text{g/dm}^3\)}}{\text{Concentration of impure \(\text{H}_2\text{SO}_4\) in \(\text{g/dm}^3\)}} \right) \times 100 = \left( \frac{35.77}{37.60} \right) \times 100 = 95.12\% \][/tex]
### Summary of Results
1. Average volume of acid used: [tex]\(20.55 \, \text{cm}^3\)[/tex]
2. Concentration of solution B: [tex]\(0.6 \, \text{mol/dm}^3\)[/tex]
3. Concentration of pure acid in solution A: [tex]\(35.77 \, \text{g/dm}^3\)[/tex]
4. Percentage purity of acid in solution A: [tex]\(95.12\%\)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.