Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

QUESTION FIVE

B is a solution containing [tex][tex]$24 \, \text{g}$[/tex][/tex] of [tex]\text{NaOH}[/tex] per [tex]\text{dm}^3[/tex].
A is a solution containing [tex][tex]$37.60 \, \text{g dm}^{-3}$[/tex][/tex] of impure [tex]\text{H}_2\text{SO}_4[/tex].

a. Put solution [tex][tex]$A$[/tex][/tex] into the burette and titrate [tex]$25 \, \text{cm}^3[/tex] of [tex]B[/tex] using phenolphthalein. Tabulate your burette readings and calculate the average titre.

b. From your results, calculate:
i. The concentration of solution [tex]B[/tex] in [tex]\text{mol dm}^{-3}[/tex].
ii. The concentration of pure acid in solution [tex]A[/tex] in [tex]\text{g dm}^{-3}[/tex].
iii. The percentage purity of acid in solution [tex]A[/tex].

[tex]\[
[\text{Na} = 23, \text{O} = 16, \text{H} = 1, \text{S} = 32]
\][/tex]

Titration Table

[tex]\[
\begin{array}{|l|l|l|}
\hline \text{Burette readings} \, / \, \text{cm}^3 & \text{1}^{\text{st}} \, \text{Titration} & \text{2}^{\text{nd}} \, \text{Titration} \\
\hline \text{Final reading} \, / \, \text{cm}^3 & 20.60 & 20.50 \\
\hline \text{Initial reading} \, / \, \text{cm}^3 & 0.00 & 0.00 \\
\hline \text{Volume of acid used} \, / \, \text{titre} \, / \, \text{cm}^3 & 20.60 & 20.50 \\
\hline
\end{array}
\][/tex]


Sagot :

### Solution

#### a. Average Volume of Titration

First, we need to tabulate the titration table and calculate the average volume of the titrations.

Given:
- First titration volume: [tex]\(20.60 \, \text{cm}^3\)[/tex]
- Second titration volume: [tex]\(20.50 \, \text{cm}^3\)[/tex]

To find the average volume:
[tex]\[ \text{Average volume} = \frac{{20.60 \, \text{cm}^3 + 20.50 \, \text{cm}^3}}{2} = 20.55 \, \text{cm}^3 \][/tex]

#### b.i. Concentration of Solution B in [tex]\(\text{mol}/\text{dm}^3\)[/tex]

Given that solution B contains [tex]\(24 \, \text{g}\)[/tex] of NaOH per [tex]\(\text{dm}^3\)[/tex], we need to convert this to [tex]\(\text{mol}/\text{dm}^3\)[/tex].

Molar mass of NaOH:
[tex]\[ \text{Na} = 23 \quad \text{O} = 16 \quad \text{H} = 1 \][/tex]
[tex]\[ \text{Molar mass of NaOH} = 23 + 16 + 1 = 40 \, \text{g/mol} \][/tex]

Concentration in [tex]\(\text{mol}/\text{dm}^3\)[/tex]:
[tex]\[ \text{Concentration of NaOH} = \frac{24 \, \text{g/dm}^3}{40 \, \text{g/mol}} = 0.6 \, \text{mol/dm}^3 \][/tex]

#### b.ii. Concentration of Pure Acid in Solution A in [tex]\(\text{g/dm}^3\)[/tex]

Moles of NaOH used:
Given that [tex]\(25 \, \text{cm}^3\)[/tex] (or [tex]\(0.025 \, \text{dm}^3\)[/tex]) of NaOH solution was used:
[tex]\[ \text{Moles of NaOH} = \text{Concentration} \times \text{Volume} = 0.6 \, \text{mol/dm}^3 \times 0.025 \, \text{dm}^3 = 0.015 \, \text{mol} \][/tex]

From the balanced chemical equation:
[tex]\[ 2 \, \text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2 \, \text{H}_2\text{O} \][/tex]
1 mole of [tex]\(\text{H}_2\text{SO}_4\)[/tex] reacts with 2 moles of [tex]\(\text{NaOH}\)[/tex], thus:
[tex]\[ \text{Moles of} \, \text{H}_2\text{SO}_4 = \frac{\text{Moles of NaOH}}{2} = \frac{0.015}{2} = 0.0075 \, \text{mol} \][/tex]

Volume of [tex]\(\text{H}_2\text{SO}_4\)[/tex] solution used:
[tex]\[ 20.55 \, \text{cm}^3 = 0.02055 \, \text{dm}^3 \][/tex]

Concentration of pure [tex]\(\text{H}_2\text{SO}_4\)[/tex] in solution A:
Using the moles we just calculated:
[tex]\[ \text{Concentration of pure} \, \text{H}_2\text{SO}_4 = \frac{\text{Moles}}{\text{Volume}} = \frac{0.0075 \, \text{mol}}{0.02055 \, \text{dm}^3} = 0.365 \, \text{mol/dm}^3 \][/tex]

Then convert this into [tex]\(\text{g/dm}^3\)[/tex].

Molar mass of [tex]\(\text{H}_2\text{SO}_4\)[/tex]:
[tex]\[ \text{H} = 1, \text{S} = 32, \text{O} = 16 \quad \Rightarrow \quad \text{Molar mass of} \, \text{H}_2\text{SO}_4 = 2 \times 1 + 32 + 4 \times 16 = 98 \, \text{g/mol} \][/tex]

Concentration of pure [tex]\(\text{H}_2\text{SO}_4\)[/tex] in g/dm}^3:
[tex]\[ \text{Concentration of pure} \, \text{H}_2\text{SO}_4 = 0.365 \, \text{mol/dm}^3 \times 98 \, \text{g/mol} = 35.77 \, \text{g/dm}^3 \][/tex]

#### b.iii. Percentage Purity of Acid in Solution A

Given that solution A initially contains [tex]\(37.60 \, \text{g/dm}^3\)[/tex] of impure [tex]\(\text{H}_2\text{SO}_4\)[/tex], the percentage purity is calculated as:
[tex]\[ \text{Percentage purity} = \left( \frac{\text{Concentration of pure \(\text{H}_2\text{SO}_4\) in \(\text{g/dm}^3\)}}{\text{Concentration of impure \(\text{H}_2\text{SO}_4\) in \(\text{g/dm}^3\)}} \right) \times 100 = \left( \frac{35.77}{37.60} \right) \times 100 = 95.12\% \][/tex]

### Summary of Results
1. Average volume of acid used: [tex]\(20.55 \, \text{cm}^3\)[/tex]
2. Concentration of solution B: [tex]\(0.6 \, \text{mol/dm}^3\)[/tex]
3. Concentration of pure acid in solution A: [tex]\(35.77 \, \text{g/dm}^3\)[/tex]
4. Percentage purity of acid in solution A: [tex]\(95.12\%\)[/tex]