Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

QUESTION FIVE

B is a solution containing [tex][tex]$24 \, \text{g}$[/tex][/tex] of [tex]\text{NaOH}[/tex] per [tex]\text{dm}^3[/tex].
A is a solution containing [tex][tex]$37.60 \, \text{g dm}^{-3}$[/tex][/tex] of impure [tex]\text{H}_2\text{SO}_4[/tex].

a. Put solution [tex][tex]$A$[/tex][/tex] into the burette and titrate [tex]$25 \, \text{cm}^3[/tex] of [tex]B[/tex] using phenolphthalein. Tabulate your burette readings and calculate the average titre.

b. From your results, calculate:
i. The concentration of solution [tex]B[/tex] in [tex]\text{mol dm}^{-3}[/tex].
ii. The concentration of pure acid in solution [tex]A[/tex] in [tex]\text{g dm}^{-3}[/tex].
iii. The percentage purity of acid in solution [tex]A[/tex].

[tex]\[
[\text{Na} = 23, \text{O} = 16, \text{H} = 1, \text{S} = 32]
\][/tex]

Titration Table

[tex]\[
\begin{array}{|l|l|l|}
\hline \text{Burette readings} \, / \, \text{cm}^3 & \text{1}^{\text{st}} \, \text{Titration} & \text{2}^{\text{nd}} \, \text{Titration} \\
\hline \text{Final reading} \, / \, \text{cm}^3 & 20.60 & 20.50 \\
\hline \text{Initial reading} \, / \, \text{cm}^3 & 0.00 & 0.00 \\
\hline \text{Volume of acid used} \, / \, \text{titre} \, / \, \text{cm}^3 & 20.60 & 20.50 \\
\hline
\end{array}
\][/tex]


Sagot :

### Solution

#### a. Average Volume of Titration

First, we need to tabulate the titration table and calculate the average volume of the titrations.

Given:
- First titration volume: [tex]\(20.60 \, \text{cm}^3\)[/tex]
- Second titration volume: [tex]\(20.50 \, \text{cm}^3\)[/tex]

To find the average volume:
[tex]\[ \text{Average volume} = \frac{{20.60 \, \text{cm}^3 + 20.50 \, \text{cm}^3}}{2} = 20.55 \, \text{cm}^3 \][/tex]

#### b.i. Concentration of Solution B in [tex]\(\text{mol}/\text{dm}^3\)[/tex]

Given that solution B contains [tex]\(24 \, \text{g}\)[/tex] of NaOH per [tex]\(\text{dm}^3\)[/tex], we need to convert this to [tex]\(\text{mol}/\text{dm}^3\)[/tex].

Molar mass of NaOH:
[tex]\[ \text{Na} = 23 \quad \text{O} = 16 \quad \text{H} = 1 \][/tex]
[tex]\[ \text{Molar mass of NaOH} = 23 + 16 + 1 = 40 \, \text{g/mol} \][/tex]

Concentration in [tex]\(\text{mol}/\text{dm}^3\)[/tex]:
[tex]\[ \text{Concentration of NaOH} = \frac{24 \, \text{g/dm}^3}{40 \, \text{g/mol}} = 0.6 \, \text{mol/dm}^3 \][/tex]

#### b.ii. Concentration of Pure Acid in Solution A in [tex]\(\text{g/dm}^3\)[/tex]

Moles of NaOH used:
Given that [tex]\(25 \, \text{cm}^3\)[/tex] (or [tex]\(0.025 \, \text{dm}^3\)[/tex]) of NaOH solution was used:
[tex]\[ \text{Moles of NaOH} = \text{Concentration} \times \text{Volume} = 0.6 \, \text{mol/dm}^3 \times 0.025 \, \text{dm}^3 = 0.015 \, \text{mol} \][/tex]

From the balanced chemical equation:
[tex]\[ 2 \, \text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2 \, \text{H}_2\text{O} \][/tex]
1 mole of [tex]\(\text{H}_2\text{SO}_4\)[/tex] reacts with 2 moles of [tex]\(\text{NaOH}\)[/tex], thus:
[tex]\[ \text{Moles of} \, \text{H}_2\text{SO}_4 = \frac{\text{Moles of NaOH}}{2} = \frac{0.015}{2} = 0.0075 \, \text{mol} \][/tex]

Volume of [tex]\(\text{H}_2\text{SO}_4\)[/tex] solution used:
[tex]\[ 20.55 \, \text{cm}^3 = 0.02055 \, \text{dm}^3 \][/tex]

Concentration of pure [tex]\(\text{H}_2\text{SO}_4\)[/tex] in solution A:
Using the moles we just calculated:
[tex]\[ \text{Concentration of pure} \, \text{H}_2\text{SO}_4 = \frac{\text{Moles}}{\text{Volume}} = \frac{0.0075 \, \text{mol}}{0.02055 \, \text{dm}^3} = 0.365 \, \text{mol/dm}^3 \][/tex]

Then convert this into [tex]\(\text{g/dm}^3\)[/tex].

Molar mass of [tex]\(\text{H}_2\text{SO}_4\)[/tex]:
[tex]\[ \text{H} = 1, \text{S} = 32, \text{O} = 16 \quad \Rightarrow \quad \text{Molar mass of} \, \text{H}_2\text{SO}_4 = 2 \times 1 + 32 + 4 \times 16 = 98 \, \text{g/mol} \][/tex]

Concentration of pure [tex]\(\text{H}_2\text{SO}_4\)[/tex] in g/dm}^3:
[tex]\[ \text{Concentration of pure} \, \text{H}_2\text{SO}_4 = 0.365 \, \text{mol/dm}^3 \times 98 \, \text{g/mol} = 35.77 \, \text{g/dm}^3 \][/tex]

#### b.iii. Percentage Purity of Acid in Solution A

Given that solution A initially contains [tex]\(37.60 \, \text{g/dm}^3\)[/tex] of impure [tex]\(\text{H}_2\text{SO}_4\)[/tex], the percentage purity is calculated as:
[tex]\[ \text{Percentage purity} = \left( \frac{\text{Concentration of pure \(\text{H}_2\text{SO}_4\) in \(\text{g/dm}^3\)}}{\text{Concentration of impure \(\text{H}_2\text{SO}_4\) in \(\text{g/dm}^3\)}} \right) \times 100 = \left( \frac{35.77}{37.60} \right) \times 100 = 95.12\% \][/tex]

### Summary of Results
1. Average volume of acid used: [tex]\(20.55 \, \text{cm}^3\)[/tex]
2. Concentration of solution B: [tex]\(0.6 \, \text{mol/dm}^3\)[/tex]
3. Concentration of pure acid in solution A: [tex]\(35.77 \, \text{g/dm}^3\)[/tex]
4. Percentage purity of acid in solution A: [tex]\(95.12\%\)[/tex]