Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the system of equations graphically:
[tex]\[ \begin{cases} 2x - y = 5 \\ x - y = 1 \end{cases} \][/tex]
we will follow these steps:
1. Rewrite each equation in slope-intercept form (y = mx + b) to make it easier to graph.
2. For the first equation [tex]\(2x - y = 5\)[/tex]:
- Start by isolating y.
[tex]\[ 2x - y = 5 \][/tex]
[tex]\[ -y = -2x + 5 \][/tex]
[tex]\[ y = 2x - 5 \][/tex]
3. For the second equation [tex]\(x - y = 1\)[/tex]:
- Again, isolate y.
[tex]\[ x - y = 1 \][/tex]
[tex]\[ -y = -x + 1 \][/tex]
[tex]\[ y = x - 1 \][/tex]
4. Now, plot these equations on a coordinate plane:
- For [tex]\( y = 2x - 5 \)[/tex]:
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 2(0) - 5 = -5 \)[/tex]. So, one point is [tex]\( (0, -5) \)[/tex].
- When [tex]\( x = 3 \)[/tex], [tex]\( y = 2(3) - 5 = 6 - 5 = 1 \)[/tex]. So, another point is [tex]\( (3, 1) \)[/tex].
- Draw a straight line passing through these points to represent [tex]\( y = 2x - 5 \)[/tex].
- For [tex]\( y = x - 1 \)[/tex]:
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 0 - 1 = -1 \)[/tex]. So, one point is [tex]\( (0, -1) \)[/tex].
- When [tex]\( x = 3 \)[/tex], [tex]\( y = 3 - 1 = 2 \)[/tex]. So, another point is [tex]\( (3, 2) \)[/tex].
- Draw a straight line passing through these points to represent [tex]\( y = x - 1 \)[/tex].
5. Find the intersection of the two lines:
- The two lines intersect at the point where both equations are satisfied.
Upon graphing, you will see that the lines intersect at the point [tex]\((4, 3)\)[/tex].
Therefore, the solution to the system of equations is:
[tex]\[ x = 4, \quad y = 3 \][/tex]
[tex]\[ \begin{cases} 2x - y = 5 \\ x - y = 1 \end{cases} \][/tex]
we will follow these steps:
1. Rewrite each equation in slope-intercept form (y = mx + b) to make it easier to graph.
2. For the first equation [tex]\(2x - y = 5\)[/tex]:
- Start by isolating y.
[tex]\[ 2x - y = 5 \][/tex]
[tex]\[ -y = -2x + 5 \][/tex]
[tex]\[ y = 2x - 5 \][/tex]
3. For the second equation [tex]\(x - y = 1\)[/tex]:
- Again, isolate y.
[tex]\[ x - y = 1 \][/tex]
[tex]\[ -y = -x + 1 \][/tex]
[tex]\[ y = x - 1 \][/tex]
4. Now, plot these equations on a coordinate plane:
- For [tex]\( y = 2x - 5 \)[/tex]:
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 2(0) - 5 = -5 \)[/tex]. So, one point is [tex]\( (0, -5) \)[/tex].
- When [tex]\( x = 3 \)[/tex], [tex]\( y = 2(3) - 5 = 6 - 5 = 1 \)[/tex]. So, another point is [tex]\( (3, 1) \)[/tex].
- Draw a straight line passing through these points to represent [tex]\( y = 2x - 5 \)[/tex].
- For [tex]\( y = x - 1 \)[/tex]:
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 0 - 1 = -1 \)[/tex]. So, one point is [tex]\( (0, -1) \)[/tex].
- When [tex]\( x = 3 \)[/tex], [tex]\( y = 3 - 1 = 2 \)[/tex]. So, another point is [tex]\( (3, 2) \)[/tex].
- Draw a straight line passing through these points to represent [tex]\( y = x - 1 \)[/tex].
5. Find the intersection of the two lines:
- The two lines intersect at the point where both equations are satisfied.
Upon graphing, you will see that the lines intersect at the point [tex]\((4, 3)\)[/tex].
Therefore, the solution to the system of equations is:
[tex]\[ x = 4, \quad y = 3 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.