Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve this problem, let's follow these steps:
1. Identify the given values:
- Gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- Mass of the Earth, [tex]\( M_{\text{Earth}} = 5.97 \times 10^{24} \, \text{kg} \)[/tex]
- Mass of the satellite, [tex]\( m_{\text{satellite}} = 100 \, \text{kg} \)[/tex]
- Initial orbit radius, [tex]\( r_1 = 7.5 \times 10^6 \, \text{m} \)[/tex]
- Final orbit radius, [tex]\( r_2 = 7.7 \times 10^6 \, \text{m} \)[/tex]
2. Calculate the initial gravitational force [tex]\( F_1 \)[/tex] between the Earth and the satellite using Newton's law of universal gravitation:
[tex]\[ F_1 = \frac{G \cdot M_{\text{Earth}} \cdot m_{\text{satellite}}}{r_1^2} \][/tex]
By substituting the given values:
[tex]\[ F_1 = \frac{(6.67 \times 10^{-11}) \times (5.97 \times 10^{24}) \times 100}{(7.5 \times 10^6)^2} \][/tex]
This evaluates to:
[tex]\[ F_1 \approx 707.909 \, \text{N} \][/tex]
3. Calculate the final gravitational force [tex]\( F_2 \)[/tex] when the satellite is at the new orbit radius:
[tex]\[ F_2 = \frac{G \cdot M_{\text{Earth}} \cdot m_{\text{satellite}}}{r_2^2} \][/tex]
By substituting the given values:
[tex]\[ F_2 = \frac{(6.67 \times 10^{-11}) \times (5.97 \times 10^{24}) \times 100}{(7.7 \times 10^6)^2} \][/tex]
This evaluates to:
[tex]\[ F_2 \approx 671.612 \, \text{N} \][/tex]
4. Determine the change in gravitational force [tex]\( \Delta F \)[/tex]:
[tex]\[ \Delta F = F_2 - F_1 \][/tex]
By substituting the calculated values:
[tex]\[ \Delta F = 671.612 - 707.909 \][/tex]
This evaluates to:
[tex]\[ \Delta F \approx -36.297 \, \text{N} \][/tex]
Thus, the approximate change in gravitational force from Earth as a result of this change in the satellite's orbit is [tex]\(-36 \, \text{N}\)[/tex]. Hence, the correct answer is:
D. [tex]\(-36 \, \text{N}\)[/tex]
1. Identify the given values:
- Gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- Mass of the Earth, [tex]\( M_{\text{Earth}} = 5.97 \times 10^{24} \, \text{kg} \)[/tex]
- Mass of the satellite, [tex]\( m_{\text{satellite}} = 100 \, \text{kg} \)[/tex]
- Initial orbit radius, [tex]\( r_1 = 7.5 \times 10^6 \, \text{m} \)[/tex]
- Final orbit radius, [tex]\( r_2 = 7.7 \times 10^6 \, \text{m} \)[/tex]
2. Calculate the initial gravitational force [tex]\( F_1 \)[/tex] between the Earth and the satellite using Newton's law of universal gravitation:
[tex]\[ F_1 = \frac{G \cdot M_{\text{Earth}} \cdot m_{\text{satellite}}}{r_1^2} \][/tex]
By substituting the given values:
[tex]\[ F_1 = \frac{(6.67 \times 10^{-11}) \times (5.97 \times 10^{24}) \times 100}{(7.5 \times 10^6)^2} \][/tex]
This evaluates to:
[tex]\[ F_1 \approx 707.909 \, \text{N} \][/tex]
3. Calculate the final gravitational force [tex]\( F_2 \)[/tex] when the satellite is at the new orbit radius:
[tex]\[ F_2 = \frac{G \cdot M_{\text{Earth}} \cdot m_{\text{satellite}}}{r_2^2} \][/tex]
By substituting the given values:
[tex]\[ F_2 = \frac{(6.67 \times 10^{-11}) \times (5.97 \times 10^{24}) \times 100}{(7.7 \times 10^6)^2} \][/tex]
This evaluates to:
[tex]\[ F_2 \approx 671.612 \, \text{N} \][/tex]
4. Determine the change in gravitational force [tex]\( \Delta F \)[/tex]:
[tex]\[ \Delta F = F_2 - F_1 \][/tex]
By substituting the calculated values:
[tex]\[ \Delta F = 671.612 - 707.909 \][/tex]
This evaluates to:
[tex]\[ \Delta F \approx -36.297 \, \text{N} \][/tex]
Thus, the approximate change in gravitational force from Earth as a result of this change in the satellite's orbit is [tex]\(-36 \, \text{N}\)[/tex]. Hence, the correct answer is:
D. [tex]\(-36 \, \text{N}\)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.