Answered

Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

A satellite with a mass of [tex][tex]$100 \, \text{kg}$[/tex][/tex] fires its engines to increase velocity, thereby increasing the size of its orbit about Earth. As a result, it moves from a circular orbit of radius [tex][tex]$7.5 \times 10^6 \, \text{m}$[/tex][/tex] to an orbit of radius [tex][tex]$7.7 \times 10^6 \, \text{m}$[/tex][/tex]. What is the approximate change in gravitational force from Earth as a result of this change in the satellite's orbit? (Recall that Earth has a mass of [tex][tex]$5.97 \times 10^{24} \, \text{kg}$[/tex][/tex] and [tex]G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2[/tex].)

A. [tex][tex]$-8 \, \text{N}$[/tex][/tex]
B. [tex][tex]$-16 \, \text{N}$[/tex][/tex]
C. [tex][tex]$-24 \, \text{N}$[/tex][/tex]
D. [tex][tex]$-36 \, \text{N}$[/tex][/tex]


Sagot :

To solve this problem, let's follow these steps:

1. Identify the given values:
- Gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- Mass of the Earth, [tex]\( M_{\text{Earth}} = 5.97 \times 10^{24} \, \text{kg} \)[/tex]
- Mass of the satellite, [tex]\( m_{\text{satellite}} = 100 \, \text{kg} \)[/tex]
- Initial orbit radius, [tex]\( r_1 = 7.5 \times 10^6 \, \text{m} \)[/tex]
- Final orbit radius, [tex]\( r_2 = 7.7 \times 10^6 \, \text{m} \)[/tex]

2. Calculate the initial gravitational force [tex]\( F_1 \)[/tex] between the Earth and the satellite using Newton's law of universal gravitation:
[tex]\[ F_1 = \frac{G \cdot M_{\text{Earth}} \cdot m_{\text{satellite}}}{r_1^2} \][/tex]
By substituting the given values:
[tex]\[ F_1 = \frac{(6.67 \times 10^{-11}) \times (5.97 \times 10^{24}) \times 100}{(7.5 \times 10^6)^2} \][/tex]
This evaluates to:
[tex]\[ F_1 \approx 707.909 \, \text{N} \][/tex]

3. Calculate the final gravitational force [tex]\( F_2 \)[/tex] when the satellite is at the new orbit radius:
[tex]\[ F_2 = \frac{G \cdot M_{\text{Earth}} \cdot m_{\text{satellite}}}{r_2^2} \][/tex]
By substituting the given values:
[tex]\[ F_2 = \frac{(6.67 \times 10^{-11}) \times (5.97 \times 10^{24}) \times 100}{(7.7 \times 10^6)^2} \][/tex]
This evaluates to:
[tex]\[ F_2 \approx 671.612 \, \text{N} \][/tex]

4. Determine the change in gravitational force [tex]\( \Delta F \)[/tex]:
[tex]\[ \Delta F = F_2 - F_1 \][/tex]
By substituting the calculated values:
[tex]\[ \Delta F = 671.612 - 707.909 \][/tex]
This evaluates to:
[tex]\[ \Delta F \approx -36.297 \, \text{N} \][/tex]

Thus, the approximate change in gravitational force from Earth as a result of this change in the satellite's orbit is [tex]\(-36 \, \text{N}\)[/tex]. Hence, the correct answer is:

D. [tex]\(-36 \, \text{N}\)[/tex]