Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the radius of the circle described by the equation [tex]\(x^2 + y^2 = 16\)[/tex], we need to identify the standard form of a circle equation centered at the origin, which is:
[tex]\[ x^2 + y^2 = r^2 \][/tex]
Here, [tex]\( r \)[/tex] represents the radius of the circle and [tex]\( r^2 \)[/tex] is the square of the radius.
Step-by-step:
1. Identify the given equation: The given equation is [tex]\( x^2 + y^2 = 16 \)[/tex].
2. Compare with the standard form: By comparing [tex]\( x^2 + y^2 = 16 \)[/tex] with the standard form [tex]\( x^2 + y^2 = r^2 \)[/tex], we can see that [tex]\( r^2 = 16 \)[/tex].
3. Solve for [tex]\( r \)[/tex]: To find [tex]\( r \)[/tex], take the square root of both sides of the equation [tex]\( r^2 = 16 \)[/tex]:
[tex]\[ r = \sqrt{16} \][/tex]
4. Calculate the square root: The square root of 16 is 4, as [tex]\( 4 \times 4 = 16 \)[/tex].
Therefore, the radius of the circle is [tex]\( 4.0 \)[/tex].
So, the length of the circle's radius is 4.0 units.
[tex]\[ x^2 + y^2 = r^2 \][/tex]
Here, [tex]\( r \)[/tex] represents the radius of the circle and [tex]\( r^2 \)[/tex] is the square of the radius.
Step-by-step:
1. Identify the given equation: The given equation is [tex]\( x^2 + y^2 = 16 \)[/tex].
2. Compare with the standard form: By comparing [tex]\( x^2 + y^2 = 16 \)[/tex] with the standard form [tex]\( x^2 + y^2 = r^2 \)[/tex], we can see that [tex]\( r^2 = 16 \)[/tex].
3. Solve for [tex]\( r \)[/tex]: To find [tex]\( r \)[/tex], take the square root of both sides of the equation [tex]\( r^2 = 16 \)[/tex]:
[tex]\[ r = \sqrt{16} \][/tex]
4. Calculate the square root: The square root of 16 is 4, as [tex]\( 4 \times 4 = 16 \)[/tex].
Therefore, the radius of the circle is [tex]\( 4.0 \)[/tex].
So, the length of the circle's radius is 4.0 units.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.