At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

What is the inverse of the function [tex]f(x)=2x+1[/tex]?

A. [tex]h(x)=\frac{1}{2}x-\frac{1}{2}[/tex]
B. [tex]h(x)=\frac{1}{2}x+\frac{1}{2}[/tex]
C. [tex]h(x)=\frac{1}{2}x-2[/tex]
D. [tex]h(x)=\frac{1}{2}x+2[/tex]


Sagot :

To find the inverse of the function [tex]\( f(x) = 2x + 1 \)[/tex], we need to follow several specific steps:

1. Rewrite the Function's Equation:
Let's begin with the function:
[tex]\[ y = f(x) = 2x + 1 \][/tex]

2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
To find the inverse function, we swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. This leads to:
[tex]\[ x = 2y + 1 \][/tex]

3. Solve for [tex]\( y \)[/tex]:
Now, solve for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ x = 2y + 1 \][/tex]
Subtract 1 from both sides to isolate the term with [tex]\( y \)[/tex]:
[tex]\[ x - 1 = 2y \][/tex]
Divide both sides by 2 to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{x - 1}{2} \][/tex]

4. Express the Inverse Function:
The expression [tex]\( y = \frac{x - 1}{2} \)[/tex] is the inverse of the original function. Thus, we can write:
[tex]\[ h(x) = \frac{x - 1}{2} \][/tex]

5. Simplify the Inverse Function:
Simplifying [tex]\( h(x) = \frac{x - 1}{2} \)[/tex] gives:
[tex]\[ h(x) = \frac{1}{2} x - \frac{1}{2} \][/tex]

Given the four choices:
1. [tex]\( h(x) = \frac{1}{2} x - \frac{1}{2} \)[/tex]
2. [tex]\( h(x) = \frac{1}{2} x + \frac{1}{2} \)[/tex]
3. [tex]\( h(x) = \frac{1}{2} x - 2 \)[/tex]
4. [tex]\( h(x) = \frac{1}{2} x + 2 \)[/tex]

The correct inverse function is:
[tex]\[ h(x) = \frac{1}{2} x - \frac{1}{2} \][/tex]

Therefore, the inverse of the function [tex]\( f(x) = 2x + 1 \)[/tex] is:
[tex]\[ h(x) = \frac{1}{2} x - \frac{1}{2} \][/tex]
Which corresponds to the first choice. Hence, the answer is:
[tex]\[ \boxed{1} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.