Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure! Let's calculate the molar masses of the given compounds step by step using the atomic masses from the periodic table.
### 1. Ammonia (NH₃)
To calculate the molar mass of ammonia (NH₃), we need to sum the atomic masses of 1 nitrogen (N) atom and 3 hydrogen (H) atoms.
- Atomic mass of nitrogen (N): 14.01 g/mol
- Atomic mass of hydrogen (H): 1.01 g/mol
The molar mass of NH₃ is:
[tex]\[ \text{Molar mass of NH}_3 = 1 \times (\text{atomic mass of N}) + 3 \times (\text{atomic mass of H}) \][/tex]
[tex]\[ \text{Molar mass of NH}_3 = 1 \times 14.01 + 3 \times 1.01 \][/tex]
[tex]\[ \text{Molar mass of NH}_3 = 14.01 + 3.03 \][/tex]
[tex]\[ \text{Molar mass of NH}_3 = 17.04 \][/tex]
Thus, the molar mass of ammonia (NH₃) is 17.04 g/mol.
### 2. Magnesium hydroxide (Mg(OH)₂)
To calculate the molar mass of magnesium hydroxide (Mg(OH)₂), we need to sum the atomic masses of 1 magnesium (Mg) atom, 2 oxygen (O) atoms, and 2 hydrogen (H) atoms.
- Atomic mass of magnesium (Mg): 24.31 g/mol
- Atomic mass of oxygen (O): 16.00 g/mol
- Atomic mass of hydrogen (H): 1.01 g/mol
The molar mass of Mg(OH)₂ is:
[tex]\[ \text{Molar mass of Mg(OH)}_2 = 1 \times (\text{atomic mass of Mg}) + 2 \times (\text{atomic mass of O} + \text{atomic mass of H}) \][/tex]
[tex]\[ \text{Molar mass of Mg(OH)}_2 = 1 \times 24.31 + 2 \times (16.00 + 1.01) \][/tex]
[tex]\[ \text{Molar mass of Mg(OH)}_2 = 24.31 + 2 \times 17.01 \][/tex]
[tex]\[ \text{Molar mass of Mg(OH)}_2 = 24.31 + 34.02 \][/tex]
[tex]\[ \text{Molar mass of Mg(OH)}_2 = 58.33 \][/tex]
Thus, the molar mass of magnesium hydroxide (Mg(OH)₂) is 58.33 g/mol.
### 3. Iron(III) oxide (Fe₂O₃)
To calculate the molar mass of iron(III) oxide (Fe₂O₃), we need to sum the atomic masses of 2 iron (Fe) atoms and 3 oxygen (O) atoms.
- Atomic mass of iron (Fe): 55.85 g/mol
- Atomic mass of oxygen (O): 16.00 g/mol
The molar mass of Fe₂O₃ is:
[tex]\[ \text{Molar mass of Fe}_2\text{O}_3 = 2 \times (\text{atomic mass of Fe}) + 3 \times (\text{atomic mass of O}) \][/tex]
[tex]\[ \text{Molar mass of Fe}_2\text{O}_3 = 2 \times 55.85 + 3 \times 16.00 \][/tex]
[tex]\[ \text{Molar mass of Fe}_2\text{O}_3 = 111.70 + 48.00 \][/tex]
[tex]\[ \text{Molar mass of Fe}_2\text{O}_3 = 159.70 \][/tex]
Thus, the molar mass of iron(III) oxide (Fe₂O₃) is 159.70 g/mol.
### Summary
- Ammonia (NH₃): 17.04 g/mol
- Magnesium hydroxide (Mg(OH)₂): 58.33 g/mol
- Iron(III) oxide (Fe₂O₃): 159.70 g/mol
### 1. Ammonia (NH₃)
To calculate the molar mass of ammonia (NH₃), we need to sum the atomic masses of 1 nitrogen (N) atom and 3 hydrogen (H) atoms.
- Atomic mass of nitrogen (N): 14.01 g/mol
- Atomic mass of hydrogen (H): 1.01 g/mol
The molar mass of NH₃ is:
[tex]\[ \text{Molar mass of NH}_3 = 1 \times (\text{atomic mass of N}) + 3 \times (\text{atomic mass of H}) \][/tex]
[tex]\[ \text{Molar mass of NH}_3 = 1 \times 14.01 + 3 \times 1.01 \][/tex]
[tex]\[ \text{Molar mass of NH}_3 = 14.01 + 3.03 \][/tex]
[tex]\[ \text{Molar mass of NH}_3 = 17.04 \][/tex]
Thus, the molar mass of ammonia (NH₃) is 17.04 g/mol.
### 2. Magnesium hydroxide (Mg(OH)₂)
To calculate the molar mass of magnesium hydroxide (Mg(OH)₂), we need to sum the atomic masses of 1 magnesium (Mg) atom, 2 oxygen (O) atoms, and 2 hydrogen (H) atoms.
- Atomic mass of magnesium (Mg): 24.31 g/mol
- Atomic mass of oxygen (O): 16.00 g/mol
- Atomic mass of hydrogen (H): 1.01 g/mol
The molar mass of Mg(OH)₂ is:
[tex]\[ \text{Molar mass of Mg(OH)}_2 = 1 \times (\text{atomic mass of Mg}) + 2 \times (\text{atomic mass of O} + \text{atomic mass of H}) \][/tex]
[tex]\[ \text{Molar mass of Mg(OH)}_2 = 1 \times 24.31 + 2 \times (16.00 + 1.01) \][/tex]
[tex]\[ \text{Molar mass of Mg(OH)}_2 = 24.31 + 2 \times 17.01 \][/tex]
[tex]\[ \text{Molar mass of Mg(OH)}_2 = 24.31 + 34.02 \][/tex]
[tex]\[ \text{Molar mass of Mg(OH)}_2 = 58.33 \][/tex]
Thus, the molar mass of magnesium hydroxide (Mg(OH)₂) is 58.33 g/mol.
### 3. Iron(III) oxide (Fe₂O₃)
To calculate the molar mass of iron(III) oxide (Fe₂O₃), we need to sum the atomic masses of 2 iron (Fe) atoms and 3 oxygen (O) atoms.
- Atomic mass of iron (Fe): 55.85 g/mol
- Atomic mass of oxygen (O): 16.00 g/mol
The molar mass of Fe₂O₃ is:
[tex]\[ \text{Molar mass of Fe}_2\text{O}_3 = 2 \times (\text{atomic mass of Fe}) + 3 \times (\text{atomic mass of O}) \][/tex]
[tex]\[ \text{Molar mass of Fe}_2\text{O}_3 = 2 \times 55.85 + 3 \times 16.00 \][/tex]
[tex]\[ \text{Molar mass of Fe}_2\text{O}_3 = 111.70 + 48.00 \][/tex]
[tex]\[ \text{Molar mass of Fe}_2\text{O}_3 = 159.70 \][/tex]
Thus, the molar mass of iron(III) oxide (Fe₂O₃) is 159.70 g/mol.
### Summary
- Ammonia (NH₃): 17.04 g/mol
- Magnesium hydroxide (Mg(OH)₂): 58.33 g/mol
- Iron(III) oxide (Fe₂O₃): 159.70 g/mol
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.