Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the radius of the circle given by the equation [tex]\( x^2 + y^2 = 64 \)[/tex], follow these steps:
1. Understand the Standard Form of the Circle Equation: The general form of a circle centered at the origin (0,0) is:
[tex]\[ x^2 + y^2 = r^2 \][/tex]
In this equation, [tex]\( r \)[/tex] represents the radius of the circle.
2. Identify the Given Equation: The given circle equation is:
[tex]\[ x^2 + y^2 = 64 \][/tex]
3. Relate the Given Equation to the Standard Form: By comparing the given equation [tex]\( x^2 + y^2 = 64 \)[/tex] to the standard form [tex]\( x^2 + y^2 = r^2 \)[/tex], we see that:
[tex]\[ r^2 = 64 \][/tex]
4. Solve for the Radius [tex]\( r \)[/tex]: To find the radius [tex]\( r \)[/tex], take the square root of both sides of the equation:
[tex]\[ r = \sqrt{64} \][/tex]
5. Calculate the Square Root: The square root of 64 is:
[tex]\[ \sqrt{64} = 8 \][/tex]
Therefore, the radius of the circle is [tex]\( \boxed{8} \)[/tex]. This corresponds to option A.
1. Understand the Standard Form of the Circle Equation: The general form of a circle centered at the origin (0,0) is:
[tex]\[ x^2 + y^2 = r^2 \][/tex]
In this equation, [tex]\( r \)[/tex] represents the radius of the circle.
2. Identify the Given Equation: The given circle equation is:
[tex]\[ x^2 + y^2 = 64 \][/tex]
3. Relate the Given Equation to the Standard Form: By comparing the given equation [tex]\( x^2 + y^2 = 64 \)[/tex] to the standard form [tex]\( x^2 + y^2 = r^2 \)[/tex], we see that:
[tex]\[ r^2 = 64 \][/tex]
4. Solve for the Radius [tex]\( r \)[/tex]: To find the radius [tex]\( r \)[/tex], take the square root of both sides of the equation:
[tex]\[ r = \sqrt{64} \][/tex]
5. Calculate the Square Root: The square root of 64 is:
[tex]\[ \sqrt{64} = 8 \][/tex]
Therefore, the radius of the circle is [tex]\( \boxed{8} \)[/tex]. This corresponds to option A.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.