Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which circles lie completely within the fourth quadrant, we need to examine the center and radius of each circle. The fourth quadrant is defined as the region where both [tex]\(x\)[/tex] and [tex]\(y\)[/tex] coordinates are positive.
Let's analyze each circle:
### Circle A: [tex]\((x-5)^2 + (y+5)^2 = 9\)[/tex]
- Center: [tex]\((5, -5)\)[/tex]
- Radius: The radius can be computed as the square root of 9, which is 3.
For the circle to lie completely within the fourth quadrant:
- The center must be in the fourth quadrant, implying [tex]\(y\)[/tex] must be negative.
- [tex]\(x - \text{radius}\)[/tex] and [tex]\(y - \text{radius}\)[/tex] must both remain positive.
Here:
- [tex]\(x\)[/tex] coordinate: [tex]\(5\)[/tex], which is positive.
- [tex]\(y\)[/tex] coordinate: [tex]\(-5\)[/tex], which is negative. Hence, the circle is not in the fourth quadrant.
### Circle B: [tex]\((x-2)^2 + (y+7)^2 = 64\)[/tex]
- Center: [tex]\((2, -7)\)[/tex]
- Radius: The radius is the square root of 64, which is 8.
For the circle to lie completely within the fourth quadrant:
- [tex]\(x - \text{radius} > 0\)[/tex]
- [tex]\(y - \text{radius} > 0\)[/tex]
Here:
- [tex]\(x\)[/tex] coordinate: [tex]\(2\)[/tex], radius: [tex]\(8\)[/tex]. [tex]\(2 - 8 = -6\)[/tex], negative
- [tex]\(y\)[/tex] coordinate: [tex]\(-7\)[/tex], which is negative. The center is not in the fourth quadrant.
### Circle C: [tex]\((x-12)^2 + (y+0)^2 = 72\)[/tex]
- Center: [tex]\((12, 0)\)[/tex]
- Radius: The radius is the square root of 72, which is approximately 8.49.
For the circle to lie completely within the fourth quadrant:
- [tex]\(x - \text{radius} > 0\)[/tex]
- [tex]\(y - \text{radius} > 0\)[/tex]
Here:
- [tex]\(x\)[/tex] coordinate: [tex]\(12\)[/tex], radius: [tex]\(8.49\)[/tex]. [tex]\(12 - 8.49 > 0\)[/tex], positive.
- [tex]\(y\)[/tex] coordinate: [tex]\(0\)[/tex], radius [tex]\(8.49\)[/tex]. [tex]\(0 - 8.49 = -8.49\)[/tex], negative
The center is not in the fourth quadrant.
### Circle D: [tex]\((x-9)^2 + (y+9)^2 = 16\)[/tex]
- Center: [tex]\((9, -9)\)[/tex]
- Radius: The radius is the square root of 16, which is 4.
For the circle to lie completely within the fourth quadrant:
- [tex]\(x - \text{radius} > 0\)[/tex]
- [tex]\(y - \text{radius} > 0\)[/tex]
Here:
- [tex]\(x\)[/tex] coordinate: [tex]\(9\)[/tex], radius: [tex]\(4\)[/tex]. [tex]\(9 - 4 = 5\)[/tex], positive.
- [tex]\(y\)[/tex] coordinate: [tex]\(-9\)[/tex], radius: [tex]\(4\)[/tex]. [tex]\(-9 - 4 = -13\)[/tex], negative.
The center is not in the fourth quadrant.
### Conclusion
None of the given circles lie completely within the fourth quadrant.
Thus, the answer is:
[tex]\[ \boxed{[]} \][/tex]
Let's analyze each circle:
### Circle A: [tex]\((x-5)^2 + (y+5)^2 = 9\)[/tex]
- Center: [tex]\((5, -5)\)[/tex]
- Radius: The radius can be computed as the square root of 9, which is 3.
For the circle to lie completely within the fourth quadrant:
- The center must be in the fourth quadrant, implying [tex]\(y\)[/tex] must be negative.
- [tex]\(x - \text{radius}\)[/tex] and [tex]\(y - \text{radius}\)[/tex] must both remain positive.
Here:
- [tex]\(x\)[/tex] coordinate: [tex]\(5\)[/tex], which is positive.
- [tex]\(y\)[/tex] coordinate: [tex]\(-5\)[/tex], which is negative. Hence, the circle is not in the fourth quadrant.
### Circle B: [tex]\((x-2)^2 + (y+7)^2 = 64\)[/tex]
- Center: [tex]\((2, -7)\)[/tex]
- Radius: The radius is the square root of 64, which is 8.
For the circle to lie completely within the fourth quadrant:
- [tex]\(x - \text{radius} > 0\)[/tex]
- [tex]\(y - \text{radius} > 0\)[/tex]
Here:
- [tex]\(x\)[/tex] coordinate: [tex]\(2\)[/tex], radius: [tex]\(8\)[/tex]. [tex]\(2 - 8 = -6\)[/tex], negative
- [tex]\(y\)[/tex] coordinate: [tex]\(-7\)[/tex], which is negative. The center is not in the fourth quadrant.
### Circle C: [tex]\((x-12)^2 + (y+0)^2 = 72\)[/tex]
- Center: [tex]\((12, 0)\)[/tex]
- Radius: The radius is the square root of 72, which is approximately 8.49.
For the circle to lie completely within the fourth quadrant:
- [tex]\(x - \text{radius} > 0\)[/tex]
- [tex]\(y - \text{radius} > 0\)[/tex]
Here:
- [tex]\(x\)[/tex] coordinate: [tex]\(12\)[/tex], radius: [tex]\(8.49\)[/tex]. [tex]\(12 - 8.49 > 0\)[/tex], positive.
- [tex]\(y\)[/tex] coordinate: [tex]\(0\)[/tex], radius [tex]\(8.49\)[/tex]. [tex]\(0 - 8.49 = -8.49\)[/tex], negative
The center is not in the fourth quadrant.
### Circle D: [tex]\((x-9)^2 + (y+9)^2 = 16\)[/tex]
- Center: [tex]\((9, -9)\)[/tex]
- Radius: The radius is the square root of 16, which is 4.
For the circle to lie completely within the fourth quadrant:
- [tex]\(x - \text{radius} > 0\)[/tex]
- [tex]\(y - \text{radius} > 0\)[/tex]
Here:
- [tex]\(x\)[/tex] coordinate: [tex]\(9\)[/tex], radius: [tex]\(4\)[/tex]. [tex]\(9 - 4 = 5\)[/tex], positive.
- [tex]\(y\)[/tex] coordinate: [tex]\(-9\)[/tex], radius: [tex]\(4\)[/tex]. [tex]\(-9 - 4 = -13\)[/tex], negative.
The center is not in the fourth quadrant.
### Conclusion
None of the given circles lie completely within the fourth quadrant.
Thus, the answer is:
[tex]\[ \boxed{[]} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.