Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the given question, let's focus on the expression [tex]\(\frac{x}{y} + \frac{3}{2}\)[/tex] and finding the value of [tex]\(\frac{x^3 + y^3}{x^2 - y^2}\)[/tex].
### Step-by-Step Solution:
1. Given the Expression:
[tex]\[ \frac{x}{y} + \frac{3}{2} \][/tex]
This is an expression in terms of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. Without additional specific values for [tex]\(x\)[/tex] and [tex]\(y\)[/tex], the expression remains as it is.
2. Expression to Simplify:
[tex]\[ \frac{x^3 + y^3}{x^2 - y^2} \][/tex]
3. Using Algebraic Identities:
We can use the algebraic identities to rewrite and simplify the expression:
- The identity for the sum of cubes:
[tex]\[ x^3 + y^3 = (x+y)(x^2 - xy + y^2) \][/tex]
- The difference of squares:
[tex]\[ x^2 - y^2 = (x-y)(x+y) \][/tex]
4. Form the Fraction and Simplify:
First, substitute the algebraic identities into the fraction:
[tex]\[ \frac{(x+y)(x^2 - xy + y^2)}{(x-y)(x+y)} \][/tex]
5. Cancel Common Factors:
The [tex]\((x+y)\)[/tex] terms in the numerator and the denominator cancel each other out:
[tex]\[ \frac{x^2 - xy + y^2}{x-y} \][/tex]
Therefore, the simplified form of the expression [tex]\(\frac{x^3 + y^3}{x^2 - y^2}\)[/tex] is [tex]\(\frac{x^2 - xy + y^2}{x-y}\)[/tex].
Given the result from the analysis above, our answer is:
[tex]\[ [x/y + 1.5, (x^3 + y^3)/(x^2 - y^2), (x^3 + y^3)/(x^2 - y^2)] \][/tex]
It matches:
- [tex]\(\frac{x}{y} + \frac{3}{2}\)[/tex]
- [tex]\(\frac{x^3 + y^3}{x^2 - y^2}\)[/tex]
### Answer Recognition:
Based on the given options in part 60:
- The simplified form of the expression does not match any numerical value provided in the options (A, B, C, D).
So, the correct choice for part 60 is:
[tex]\( \boxed{D\text{)}\ None\ of\ these} \)[/tex]
### Part 61:
Given the expression to evaluate:
[tex]\[ 2 + 1 + \left\{ 2 + 1 + \left( 2 + \frac{1}{3} \right) \right\} \][/tex]
1. Evaluate the innermost expression:
[tex]\[ 2 + \frac{1}{3} = \frac{6}{3} + \frac{1}{3} = \frac{7}{3} \][/tex]
2. Move outward and add:
[tex]\[ 2 + 1 + \left(\frac{7}{3}\right) = 3 + \frac{7}{3} = \frac{9}{3} + \frac{7}{3} = \frac{16}{3} \][/tex]
3. Finally, add the outermost terms:
[tex]\[ 2 + 1 + \left(\frac{16}{3}\right) = 3 + \frac{16}{3} = \frac{9}{3} + \frac{16}{3} = \frac{25}{3} \][/tex]
Therefore, the correct answer for part 61 is:
[tex]\( \boxed{25} \)[/tex]
### Step-by-Step Solution:
1. Given the Expression:
[tex]\[ \frac{x}{y} + \frac{3}{2} \][/tex]
This is an expression in terms of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. Without additional specific values for [tex]\(x\)[/tex] and [tex]\(y\)[/tex], the expression remains as it is.
2. Expression to Simplify:
[tex]\[ \frac{x^3 + y^3}{x^2 - y^2} \][/tex]
3. Using Algebraic Identities:
We can use the algebraic identities to rewrite and simplify the expression:
- The identity for the sum of cubes:
[tex]\[ x^3 + y^3 = (x+y)(x^2 - xy + y^2) \][/tex]
- The difference of squares:
[tex]\[ x^2 - y^2 = (x-y)(x+y) \][/tex]
4. Form the Fraction and Simplify:
First, substitute the algebraic identities into the fraction:
[tex]\[ \frac{(x+y)(x^2 - xy + y^2)}{(x-y)(x+y)} \][/tex]
5. Cancel Common Factors:
The [tex]\((x+y)\)[/tex] terms in the numerator and the denominator cancel each other out:
[tex]\[ \frac{x^2 - xy + y^2}{x-y} \][/tex]
Therefore, the simplified form of the expression [tex]\(\frac{x^3 + y^3}{x^2 - y^2}\)[/tex] is [tex]\(\frac{x^2 - xy + y^2}{x-y}\)[/tex].
Given the result from the analysis above, our answer is:
[tex]\[ [x/y + 1.5, (x^3 + y^3)/(x^2 - y^2), (x^3 + y^3)/(x^2 - y^2)] \][/tex]
It matches:
- [tex]\(\frac{x}{y} + \frac{3}{2}\)[/tex]
- [tex]\(\frac{x^3 + y^3}{x^2 - y^2}\)[/tex]
### Answer Recognition:
Based on the given options in part 60:
- The simplified form of the expression does not match any numerical value provided in the options (A, B, C, D).
So, the correct choice for part 60 is:
[tex]\( \boxed{D\text{)}\ None\ of\ these} \)[/tex]
### Part 61:
Given the expression to evaluate:
[tex]\[ 2 + 1 + \left\{ 2 + 1 + \left( 2 + \frac{1}{3} \right) \right\} \][/tex]
1. Evaluate the innermost expression:
[tex]\[ 2 + \frac{1}{3} = \frac{6}{3} + \frac{1}{3} = \frac{7}{3} \][/tex]
2. Move outward and add:
[tex]\[ 2 + 1 + \left(\frac{7}{3}\right) = 3 + \frac{7}{3} = \frac{9}{3} + \frac{7}{3} = \frac{16}{3} \][/tex]
3. Finally, add the outermost terms:
[tex]\[ 2 + 1 + \left(\frac{16}{3}\right) = 3 + \frac{16}{3} = \frac{9}{3} + \frac{16}{3} = \frac{25}{3} \][/tex]
Therefore, the correct answer for part 61 is:
[tex]\( \boxed{25} \)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.