Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's go through each part of the question step by step.
### Given:
- Initial cost of the laptop: [tex]\( Rs \, 75,000 \)[/tex]
- Depreciation rate per annum: [tex]\( 10\% \)[/tex]
### (i) What does [tex]\( R \)[/tex] represent in the price after [tex]\( T \)[/tex] years [tex]\( V_T = V \left( 1 - \frac{R}{100} \right)^T \)[/tex]?
In the formula [tex]\( V_T = V \left( 1 - \frac{R}{100} \right)^T \)[/tex]:
- [tex]\( V \)[/tex] is the initial cost of the laptop, which is [tex]\( Rs \, 75,000 \)[/tex].
- [tex]\( R \)[/tex] is the annual depreciation rate in percentage. In this case, [tex]\( R = 10 \% \)[/tex].
- [tex]\( T \)[/tex] is the number of years after which we want to find the depreciated value.
Therefore, [tex]\( R \)[/tex] represents the annual depreciation rate in percentage.
### (ii) What will be the price of the laptop after 2 years?
Using the formula:
[tex]\[ V_T = V \left( 1 - \frac{R}{100} \right)^T \][/tex]
For [tex]\( T = 2 \)[/tex] years:
- [tex]\( V = 75000 \)[/tex]
- [tex]\( R = 10 \)[/tex]
- [tex]\( T = 2 \)[/tex]
Substituting the values:
[tex]\[ V_2 = 75000 \left( 1 - \frac{10}{100} \right)^2 \][/tex]
[tex]\[ V_2 = 75000 \left( 0.90 \right)^2 \][/tex]
[tex]\[ V_2 = 75000 \times 0.81 \][/tex]
[tex]\[ V_2 = 60750.00000000001 \][/tex]
So, the price of the laptop after 2 years will be [tex]\( Rs \, 60750.00 \)[/tex].
### (iii) If he sold the laptop after 3 years at the same rate of compound depreciation, how much less amount would he get than if it was sold after 2 years?
First, we need to calculate the price of the laptop after 3 years:
For [tex]\( T = 3 \)[/tex] years:
- [tex]\( V = 75000 \)[/tex]
- [tex]\( R = 10 \)[/tex]
- [tex]\( T = 3 \)[/tex]
Substituting the values:
[tex]\[ V_3 = 75000 \left( 1 - \frac{10}{100} \right)^3 \][/tex]
[tex]\[ V_3 = 75000 \left( 0.90 \right)^3 \][/tex]
[tex]\[ V_3 = 75000 \times 0.729 \][/tex]
[tex]\[ V_3 = 54675.00000000001 \][/tex]
So the price of the laptop after 3 years will be [tex]\( Rs \, 54675.00 \)[/tex].
Now, let's find the difference between the price after 2 years and the price after 3 years:
[tex]\[ \text{Difference} = 60750.00000000001 - 54675.00000000001 \][/tex]
[tex]\[ \text{Difference} = 6075.00 \][/tex]
So, if he sells the laptop after 3 years, he would get [tex]\( Rs \, 6075.00 \)[/tex] less than if it was sold after 2 years.
### Given:
- Initial cost of the laptop: [tex]\( Rs \, 75,000 \)[/tex]
- Depreciation rate per annum: [tex]\( 10\% \)[/tex]
### (i) What does [tex]\( R \)[/tex] represent in the price after [tex]\( T \)[/tex] years [tex]\( V_T = V \left( 1 - \frac{R}{100} \right)^T \)[/tex]?
In the formula [tex]\( V_T = V \left( 1 - \frac{R}{100} \right)^T \)[/tex]:
- [tex]\( V \)[/tex] is the initial cost of the laptop, which is [tex]\( Rs \, 75,000 \)[/tex].
- [tex]\( R \)[/tex] is the annual depreciation rate in percentage. In this case, [tex]\( R = 10 \% \)[/tex].
- [tex]\( T \)[/tex] is the number of years after which we want to find the depreciated value.
Therefore, [tex]\( R \)[/tex] represents the annual depreciation rate in percentage.
### (ii) What will be the price of the laptop after 2 years?
Using the formula:
[tex]\[ V_T = V \left( 1 - \frac{R}{100} \right)^T \][/tex]
For [tex]\( T = 2 \)[/tex] years:
- [tex]\( V = 75000 \)[/tex]
- [tex]\( R = 10 \)[/tex]
- [tex]\( T = 2 \)[/tex]
Substituting the values:
[tex]\[ V_2 = 75000 \left( 1 - \frac{10}{100} \right)^2 \][/tex]
[tex]\[ V_2 = 75000 \left( 0.90 \right)^2 \][/tex]
[tex]\[ V_2 = 75000 \times 0.81 \][/tex]
[tex]\[ V_2 = 60750.00000000001 \][/tex]
So, the price of the laptop after 2 years will be [tex]\( Rs \, 60750.00 \)[/tex].
### (iii) If he sold the laptop after 3 years at the same rate of compound depreciation, how much less amount would he get than if it was sold after 2 years?
First, we need to calculate the price of the laptop after 3 years:
For [tex]\( T = 3 \)[/tex] years:
- [tex]\( V = 75000 \)[/tex]
- [tex]\( R = 10 \)[/tex]
- [tex]\( T = 3 \)[/tex]
Substituting the values:
[tex]\[ V_3 = 75000 \left( 1 - \frac{10}{100} \right)^3 \][/tex]
[tex]\[ V_3 = 75000 \left( 0.90 \right)^3 \][/tex]
[tex]\[ V_3 = 75000 \times 0.729 \][/tex]
[tex]\[ V_3 = 54675.00000000001 \][/tex]
So the price of the laptop after 3 years will be [tex]\( Rs \, 54675.00 \)[/tex].
Now, let's find the difference between the price after 2 years and the price after 3 years:
[tex]\[ \text{Difference} = 60750.00000000001 - 54675.00000000001 \][/tex]
[tex]\[ \text{Difference} = 6075.00 \][/tex]
So, if he sells the laptop after 3 years, he would get [tex]\( Rs \, 6075.00 \)[/tex] less than if it was sold after 2 years.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.