Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
13 L is left in the tank after 11 days
Work
To solve this problem, we can use the exponential decay formula which is:
V = P(r)^t
Where:
V = value
p = initial amount
r = rate
t = time
In this case, our values would be:
V = ?
p = 26624
r = 0.50
t = 11
Substitute the values in and solve.
V = 26624(0.50)^11
V = 13
Thus, 13 litres will remain in the tank on the 11th day.
Answer:
[tex]13\; {\rm L}[/tex].
Step-by-step explanation:
Start by listing the amount of water in the tank after each day, relative to the original volume of water in the tank:
- After [tex]1[/tex] day: [tex](1/2) \times 1 = (1/2)[/tex] of the original volume.
- After [tex]2[/tex] days: [tex](1/2) \times (1/2) = (1/2^{2}) = (1/4)[/tex] of the original volume.
- After [tex]3[/tex] days: [tex](1/2) \times ((1/2) \times (1/2)) = (1/2^{3}) = (1/8)[/tex] of the original volume.
Observe that after [tex]n[/tex] days, the volume in the tank would be [tex](1/2^{n})[/tex] the original volume. Hence, after [tex]n = 11[/tex] days, the volume in the tank would be [tex](1/2^{11}) = (1/2048)[/tex] of the original volume:
[tex]\displaystyle \frac{1}{2048} \times 26\, 624\; {\rm L} = 13\; {\rm L}[/tex].
In other words, there would be [tex]13\; {\rm L}[/tex] of water in the tank after [tex]11[/tex] days.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.