Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
13 L is left in the tank after 11 days
Work
To solve this problem, we can use the exponential decay formula which is:
V = P(r)^t
Where:
V = value
p = initial amount
r = rate
t = time
In this case, our values would be:
V = ?
p = 26624
r = 0.50
t = 11
Substitute the values in and solve.
V = 26624(0.50)^11
V = 13
Thus, 13 litres will remain in the tank on the 11th day.
Answer:
[tex]13\; {\rm L}[/tex].
Step-by-step explanation:
Start by listing the amount of water in the tank after each day, relative to the original volume of water in the tank:
- After [tex]1[/tex] day: [tex](1/2) \times 1 = (1/2)[/tex] of the original volume.
- After [tex]2[/tex] days: [tex](1/2) \times (1/2) = (1/2^{2}) = (1/4)[/tex] of the original volume.
- After [tex]3[/tex] days: [tex](1/2) \times ((1/2) \times (1/2)) = (1/2^{3}) = (1/8)[/tex] of the original volume.
Observe that after [tex]n[/tex] days, the volume in the tank would be [tex](1/2^{n})[/tex] the original volume. Hence, after [tex]n = 11[/tex] days, the volume in the tank would be [tex](1/2^{11}) = (1/2048)[/tex] of the original volume:
[tex]\displaystyle \frac{1}{2048} \times 26\, 624\; {\rm L} = 13\; {\rm L}[/tex].
In other words, there would be [tex]13\; {\rm L}[/tex] of water in the tank after [tex]11[/tex] days.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.