Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the cube root of the fraction [tex]\(\frac{8}{27}\)[/tex], we can break it down as follows:
1. Understand what we are finding:
- We need to determine the cube root of the fraction [tex]\(\frac{8}{27}\)[/tex].
- The cube root of a number [tex]\(x\)[/tex] is a number [tex]\(y\)[/tex] such that [tex]\(y^3 = x\)[/tex].
2. Calculate the fraction result:
- The fraction itself is [tex]\(\frac{8}{27} \approx 0.2962962962962963\)[/tex].
3. Calculate the cube root:
- We now want to find the cube root of [tex]\(0.2962962962962963\)[/tex].
- The cube root of [tex]\(0.2962962962962963\)[/tex] is approximately [tex]\(0.6666666666666666\)[/tex].
Putting these steps together:
1. We start with the fraction [tex]\(\frac{8}{27}\)[/tex], which is approximately [tex]\(0.2962962962962963\)[/tex].
2. Next, we determine the cube root of [tex]\(0.2962962962962963\)[/tex], which is approximately [tex]\(0.6666666666666666\)[/tex].
Therefore, [tex]\(\sqrt[3]{\frac{8}{27}} \approx 0.6666666666666666\)[/tex].
1. Understand what we are finding:
- We need to determine the cube root of the fraction [tex]\(\frac{8}{27}\)[/tex].
- The cube root of a number [tex]\(x\)[/tex] is a number [tex]\(y\)[/tex] such that [tex]\(y^3 = x\)[/tex].
2. Calculate the fraction result:
- The fraction itself is [tex]\(\frac{8}{27} \approx 0.2962962962962963\)[/tex].
3. Calculate the cube root:
- We now want to find the cube root of [tex]\(0.2962962962962963\)[/tex].
- The cube root of [tex]\(0.2962962962962963\)[/tex] is approximately [tex]\(0.6666666666666666\)[/tex].
Putting these steps together:
1. We start with the fraction [tex]\(\frac{8}{27}\)[/tex], which is approximately [tex]\(0.2962962962962963\)[/tex].
2. Next, we determine the cube root of [tex]\(0.2962962962962963\)[/tex], which is approximately [tex]\(0.6666666666666666\)[/tex].
Therefore, [tex]\(\sqrt[3]{\frac{8}{27}} \approx 0.6666666666666666\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.