Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's break down the problem step by step.
First, let [tex]\( x \)[/tex] represent the time Cora spends revising for French in hours.
Given the ratio of the time spent on History to French is [tex]\( 7:2 \)[/tex], the time she spends on History can be expressed in terms of [tex]\( x \)[/tex]:
[tex]\[ \text{Time spent on History} = \frac{7}{2}x \][/tex]
We also know that the time spent on History is 20 hours more than the time spent on French:
[tex]\[ \frac{7}{2}x = x + 20 \][/tex]
To solve for [tex]\( x \)[/tex], we can set up the equation:
[tex]\[ \frac{7}{2}x = x + 20 \][/tex]
Next, we need to clear the fraction by multiplying every term by 2:
[tex]\[ 7x = 2x + 40 \][/tex]
Now, we isolate [tex]\( x \)[/tex] by subtracting [tex]\( 2x \)[/tex] from both sides of the equation:
[tex]\[ 5x = 40 \][/tex]
Then, we solve for [tex]\( x \)[/tex] by dividing both sides by 5:
[tex]\[ x = \frac{40}{5} \][/tex]
[tex]\[ x = 8 \][/tex]
So, Cora spends 8 hours revising for French.
Now, we find the time Cora spends revising for History:
[tex]\[ \text{Time spent on History} = x + 20 = 8 + 20 = 28 \text{ hours} \][/tex]
Finally, we calculate the total time Cora spends revising for both subjects:
[tex]\[ \text{Total time} = \text{Time spent on French} + \text{Time spent on History} \][/tex]
[tex]\[ \text{Total time} = 8 + 28 = 36 \text{ hours} \][/tex]
Therefore, the total time Cora spends revising is 36 hours.
First, let [tex]\( x \)[/tex] represent the time Cora spends revising for French in hours.
Given the ratio of the time spent on History to French is [tex]\( 7:2 \)[/tex], the time she spends on History can be expressed in terms of [tex]\( x \)[/tex]:
[tex]\[ \text{Time spent on History} = \frac{7}{2}x \][/tex]
We also know that the time spent on History is 20 hours more than the time spent on French:
[tex]\[ \frac{7}{2}x = x + 20 \][/tex]
To solve for [tex]\( x \)[/tex], we can set up the equation:
[tex]\[ \frac{7}{2}x = x + 20 \][/tex]
Next, we need to clear the fraction by multiplying every term by 2:
[tex]\[ 7x = 2x + 40 \][/tex]
Now, we isolate [tex]\( x \)[/tex] by subtracting [tex]\( 2x \)[/tex] from both sides of the equation:
[tex]\[ 5x = 40 \][/tex]
Then, we solve for [tex]\( x \)[/tex] by dividing both sides by 5:
[tex]\[ x = \frac{40}{5} \][/tex]
[tex]\[ x = 8 \][/tex]
So, Cora spends 8 hours revising for French.
Now, we find the time Cora spends revising for History:
[tex]\[ \text{Time spent on History} = x + 20 = 8 + 20 = 28 \text{ hours} \][/tex]
Finally, we calculate the total time Cora spends revising for both subjects:
[tex]\[ \text{Total time} = \text{Time spent on French} + \text{Time spent on History} \][/tex]
[tex]\[ \text{Total time} = 8 + 28 = 36 \text{ hours} \][/tex]
Therefore, the total time Cora spends revising is 36 hours.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.