Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the ratio between the energy released and the moles of oxygen involved in the given chemical reaction, let's break the problem down into a series of logical steps.
1. Chemical Reaction Analysis:
The balanced chemical equation provided is:
[tex]\[ \text{C}_2\text{H}_5\text{OH} + 2 \text{O}_2 \rightarrow 2 \text{CO}_2 + 3 \text{H}_2\text{O} + 1367 \text{ kJ} \][/tex]
2. Energy Released:
From the equation, we see that 1367 kJ of energy is released for the entire reaction.
3. Moles of Oxygen:
The equation tells us that 2 moles of O[tex]\(_2\)[/tex] are needed for the combustion of ethanol (C[tex]\(_2\)[/tex]H[tex]\(_5\)[/tex]OH).
4. Energy per Mole of Oxygen:
To find the ratio of energy per mole of oxygen involved, we need to divide the total energy released by the number of moles of O[tex]\(_2\)[/tex].
[tex]\[ \text{Energy per mole of O}_2 = \frac{\text{Total Energy Released}}{\text{Moles of O}_2} \][/tex]
Substituting the values we have:
[tex]\[ \text{Energy per mole of O}_2 = \frac{1367 \text{ kJ}}{2 \text{ moles}} \][/tex]
5. Final Calculation:
Performing the division gives:
[tex]\[ \text{Energy per mole of O}_2 = 683.5 \text{ kJ/mol} \][/tex]
Thus, the ratio between the energy released and the moles of oxygen involved in the reaction is 683.5 kJ per mole of O[tex]\(_2\)[/tex].
1. Chemical Reaction Analysis:
The balanced chemical equation provided is:
[tex]\[ \text{C}_2\text{H}_5\text{OH} + 2 \text{O}_2 \rightarrow 2 \text{CO}_2 + 3 \text{H}_2\text{O} + 1367 \text{ kJ} \][/tex]
2. Energy Released:
From the equation, we see that 1367 kJ of energy is released for the entire reaction.
3. Moles of Oxygen:
The equation tells us that 2 moles of O[tex]\(_2\)[/tex] are needed for the combustion of ethanol (C[tex]\(_2\)[/tex]H[tex]\(_5\)[/tex]OH).
4. Energy per Mole of Oxygen:
To find the ratio of energy per mole of oxygen involved, we need to divide the total energy released by the number of moles of O[tex]\(_2\)[/tex].
[tex]\[ \text{Energy per mole of O}_2 = \frac{\text{Total Energy Released}}{\text{Moles of O}_2} \][/tex]
Substituting the values we have:
[tex]\[ \text{Energy per mole of O}_2 = \frac{1367 \text{ kJ}}{2 \text{ moles}} \][/tex]
5. Final Calculation:
Performing the division gives:
[tex]\[ \text{Energy per mole of O}_2 = 683.5 \text{ kJ/mol} \][/tex]
Thus, the ratio between the energy released and the moles of oxygen involved in the reaction is 683.5 kJ per mole of O[tex]\(_2\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.