Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the ratio between the energy released and the moles of oxygen involved in the given chemical reaction, let's break the problem down into a series of logical steps.
1. Chemical Reaction Analysis:
The balanced chemical equation provided is:
[tex]\[ \text{C}_2\text{H}_5\text{OH} + 2 \text{O}_2 \rightarrow 2 \text{CO}_2 + 3 \text{H}_2\text{O} + 1367 \text{ kJ} \][/tex]
2. Energy Released:
From the equation, we see that 1367 kJ of energy is released for the entire reaction.
3. Moles of Oxygen:
The equation tells us that 2 moles of O[tex]\(_2\)[/tex] are needed for the combustion of ethanol (C[tex]\(_2\)[/tex]H[tex]\(_5\)[/tex]OH).
4. Energy per Mole of Oxygen:
To find the ratio of energy per mole of oxygen involved, we need to divide the total energy released by the number of moles of O[tex]\(_2\)[/tex].
[tex]\[ \text{Energy per mole of O}_2 = \frac{\text{Total Energy Released}}{\text{Moles of O}_2} \][/tex]
Substituting the values we have:
[tex]\[ \text{Energy per mole of O}_2 = \frac{1367 \text{ kJ}}{2 \text{ moles}} \][/tex]
5. Final Calculation:
Performing the division gives:
[tex]\[ \text{Energy per mole of O}_2 = 683.5 \text{ kJ/mol} \][/tex]
Thus, the ratio between the energy released and the moles of oxygen involved in the reaction is 683.5 kJ per mole of O[tex]\(_2\)[/tex].
1. Chemical Reaction Analysis:
The balanced chemical equation provided is:
[tex]\[ \text{C}_2\text{H}_5\text{OH} + 2 \text{O}_2 \rightarrow 2 \text{CO}_2 + 3 \text{H}_2\text{O} + 1367 \text{ kJ} \][/tex]
2. Energy Released:
From the equation, we see that 1367 kJ of energy is released for the entire reaction.
3. Moles of Oxygen:
The equation tells us that 2 moles of O[tex]\(_2\)[/tex] are needed for the combustion of ethanol (C[tex]\(_2\)[/tex]H[tex]\(_5\)[/tex]OH).
4. Energy per Mole of Oxygen:
To find the ratio of energy per mole of oxygen involved, we need to divide the total energy released by the number of moles of O[tex]\(_2\)[/tex].
[tex]\[ \text{Energy per mole of O}_2 = \frac{\text{Total Energy Released}}{\text{Moles of O}_2} \][/tex]
Substituting the values we have:
[tex]\[ \text{Energy per mole of O}_2 = \frac{1367 \text{ kJ}}{2 \text{ moles}} \][/tex]
5. Final Calculation:
Performing the division gives:
[tex]\[ \text{Energy per mole of O}_2 = 683.5 \text{ kJ/mol} \][/tex]
Thus, the ratio between the energy released and the moles of oxygen involved in the reaction is 683.5 kJ per mole of O[tex]\(_2\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.