Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's work through the problem step by step.
1. Convert [tex]\(0.\dot{4}\)[/tex] to a fraction:
The repeating decimal [tex]\(0.\dot{4}\)[/tex] can be expressed as:
[tex]\[ 0.\dot{4} = \frac{4}{9} \][/tex]
2. Convert [tex]\(0.0\dot{7}\)[/tex] to a fraction:
The repeating decimal [tex]\(0.0\dot{7}\)[/tex] can be expressed as follows. Let [tex]\(x = 0.0\dot{7}\)[/tex].
[tex]\( x = 0.07777\ldots \)[/tex]
To find [tex]\(x\)[/tex] as a fraction, let's multiply [tex]\(x\)[/tex] by 10 to make the repeating part move one decimal place to the left:
[tex]\[ 10x = 0.77777\ldots \][/tex]
Now multiply by an additional 10:
[tex]\[ 100x = 7.7777\ldots \][/tex]
Next, subtract the first equation from the second:
[tex]\[ 100x - 10x = 7.7777\ldots - 0.7777\ldots \][/tex]
[tex]\[ 90x = 7 \][/tex]
[tex]\[ x = \frac{7}{90} \][/tex]
So,
[tex]\[ 0.0\dot{7} = \frac{7}{90} \][/tex]
3. Add the fractions [tex]\(\frac{4}{9}\)[/tex] and [tex]\(\frac{7}{90}\)[/tex]:
To add these fractions, we first need a common denominator. The least common multiple (LCM) of 9 and 90 is 90. Convert [tex]\(\frac{4}{9}\)[/tex] to an equivalent fraction with the denominator 90:
[tex]\[ \frac{4}{9} = \frac{4 \times 10}{9 \times 10} = \frac{40}{90} \][/tex]
Now, we add the two fractions:
[tex]\[ \frac{4}{9} + \frac{7}{90} = \frac{40}{90} + \frac{7}{90} = \frac{40 + 7}{90} = \frac{47}{90} \][/tex]
4. Simplify the fraction (if necessary):
The fraction [tex]\(\frac{47}{90}\)[/tex] is already in its simplest form because 47 is a prime number and does not have any common factors with 90.
Thus,
[tex]\[ 0.\dot{4} + 0.0\dot{7} = \frac{47}{90} \][/tex]
1. Convert [tex]\(0.\dot{4}\)[/tex] to a fraction:
The repeating decimal [tex]\(0.\dot{4}\)[/tex] can be expressed as:
[tex]\[ 0.\dot{4} = \frac{4}{9} \][/tex]
2. Convert [tex]\(0.0\dot{7}\)[/tex] to a fraction:
The repeating decimal [tex]\(0.0\dot{7}\)[/tex] can be expressed as follows. Let [tex]\(x = 0.0\dot{7}\)[/tex].
[tex]\( x = 0.07777\ldots \)[/tex]
To find [tex]\(x\)[/tex] as a fraction, let's multiply [tex]\(x\)[/tex] by 10 to make the repeating part move one decimal place to the left:
[tex]\[ 10x = 0.77777\ldots \][/tex]
Now multiply by an additional 10:
[tex]\[ 100x = 7.7777\ldots \][/tex]
Next, subtract the first equation from the second:
[tex]\[ 100x - 10x = 7.7777\ldots - 0.7777\ldots \][/tex]
[tex]\[ 90x = 7 \][/tex]
[tex]\[ x = \frac{7}{90} \][/tex]
So,
[tex]\[ 0.0\dot{7} = \frac{7}{90} \][/tex]
3. Add the fractions [tex]\(\frac{4}{9}\)[/tex] and [tex]\(\frac{7}{90}\)[/tex]:
To add these fractions, we first need a common denominator. The least common multiple (LCM) of 9 and 90 is 90. Convert [tex]\(\frac{4}{9}\)[/tex] to an equivalent fraction with the denominator 90:
[tex]\[ \frac{4}{9} = \frac{4 \times 10}{9 \times 10} = \frac{40}{90} \][/tex]
Now, we add the two fractions:
[tex]\[ \frac{4}{9} + \frac{7}{90} = \frac{40}{90} + \frac{7}{90} = \frac{40 + 7}{90} = \frac{47}{90} \][/tex]
4. Simplify the fraction (if necessary):
The fraction [tex]\(\frac{47}{90}\)[/tex] is already in its simplest form because 47 is a prime number and does not have any common factors with 90.
Thus,
[tex]\[ 0.\dot{4} + 0.0\dot{7} = \frac{47}{90} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.