Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the arithmetic progression (AP) where the 3rd term is 5 and the 7th term is 9, follow these steps:
1. Understand the general formula for the nth term of an AP:
[tex]\[ T_n = a + (n-1) \cdot d \][/tex]
where [tex]\(a\)[/tex] is the first term and [tex]\(d\)[/tex] is the common difference.
2. Write the equations for the given terms:
For the 3rd term ([tex]\(T_3\)[/tex]):
[tex]\[ T_3 = a + 2d = 5 \quad \text{(Equation 1)} \][/tex]
For the 7th term ([tex]\(T_7\)[/tex]):
[tex]\[ T_7 = a + 6d = 9 \quad \text{(Equation 2)} \][/tex]
3. Solve the system of linear equations formed by Equation 1 and Equation 2:
First, subtract Equation 1 from Equation 2 to eliminate [tex]\(a\)[/tex]:
[tex]\[ (a + 6d) - (a + 2d) = 9 - 5 \][/tex]
Simplify the equation:
[tex]\[ 4d = 4 \implies d = 1 \][/tex]
4. Substitute the value of [tex]\(d\)[/tex] back into Equation 1 to find [tex]\(a\)[/tex]:
Using Equation 1:
[tex]\[ a + 2(1) = 5 \][/tex]
Simplify to find [tex]\(a\)[/tex]:
[tex]\[ a + 2 = 5 \implies a = 3 \][/tex]
5. Determine the arithmetic progression:
With [tex]\(a = 3\)[/tex] and [tex]\(d = 1\)[/tex], the AP can be written as:
[tex]\[ a, a+d, a+2d, \ldots \][/tex]
Substitute [tex]\(a\)[/tex] and [tex]\(d\)[/tex]:
[tex]\[ 3, 3+1, 3+2 \cdot 1, \ldots \implies 3, 4, 5, 6, 7, 8, 9, \ldots \][/tex]
Therefore, the arithmetic progression is:
[tex]\[ 3, 4, 5, 6, 7, 8, 9, \ldots \][/tex]
1. Understand the general formula for the nth term of an AP:
[tex]\[ T_n = a + (n-1) \cdot d \][/tex]
where [tex]\(a\)[/tex] is the first term and [tex]\(d\)[/tex] is the common difference.
2. Write the equations for the given terms:
For the 3rd term ([tex]\(T_3\)[/tex]):
[tex]\[ T_3 = a + 2d = 5 \quad \text{(Equation 1)} \][/tex]
For the 7th term ([tex]\(T_7\)[/tex]):
[tex]\[ T_7 = a + 6d = 9 \quad \text{(Equation 2)} \][/tex]
3. Solve the system of linear equations formed by Equation 1 and Equation 2:
First, subtract Equation 1 from Equation 2 to eliminate [tex]\(a\)[/tex]:
[tex]\[ (a + 6d) - (a + 2d) = 9 - 5 \][/tex]
Simplify the equation:
[tex]\[ 4d = 4 \implies d = 1 \][/tex]
4. Substitute the value of [tex]\(d\)[/tex] back into Equation 1 to find [tex]\(a\)[/tex]:
Using Equation 1:
[tex]\[ a + 2(1) = 5 \][/tex]
Simplify to find [tex]\(a\)[/tex]:
[tex]\[ a + 2 = 5 \implies a = 3 \][/tex]
5. Determine the arithmetic progression:
With [tex]\(a = 3\)[/tex] and [tex]\(d = 1\)[/tex], the AP can be written as:
[tex]\[ a, a+d, a+2d, \ldots \][/tex]
Substitute [tex]\(a\)[/tex] and [tex]\(d\)[/tex]:
[tex]\[ 3, 3+1, 3+2 \cdot 1, \ldots \implies 3, 4, 5, 6, 7, 8, 9, \ldots \][/tex]
Therefore, the arithmetic progression is:
[tex]\[ 3, 4, 5, 6, 7, 8, 9, \ldots \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.