Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the problem of finding the measure of [tex]\(\angle PQR\)[/tex] in [tex]\(\triangle PQR\)[/tex], given [tex]\(PQ = 7 \, \text{cm}\)[/tex], [tex]\(QR = 16 \, \text{cm}\)[/tex], and the area of [tex]\(\triangle PQR\)[/tex] is [tex]\(28 \sqrt{3} \, \text{cm}^2\)[/tex], follow these steps:
1. Formula for the area of a triangle using two sides and the included angle:
[tex]\[ \text{Area} = \frac{1}{2} \times PQ \times QR \times \sin(\angle PQR) \][/tex]
2. Substitute the given values into the formula:
[tex]\[ 28 \sqrt{3} = \frac{1}{2} \times 7 \, \text{cm} \times 16 \, \text{cm} \times \sin(\angle PQR) \][/tex]
3. Solve for [tex]\(\sin(\angle PQR)\)[/tex]:
[tex]\[ 28 \sqrt{3} = 56 \sin(\angle PQR) \][/tex]
[tex]\[ \sin(\angle PQR) = \frac{28 \sqrt{3}}{56} \][/tex]
[tex]\[ \sin(\angle PQR) = \frac{\sqrt{3}}{2} \][/tex]
4. Find the angle whose sine is [tex]\(\frac{\sqrt{3}}{2}\)[/tex]:
We know from trigonometric values that:
[tex]\[ \sin(60^\circ) = \frac{\sqrt{3}}{2} \][/tex]
Therefore, [tex]\(\angle PQR = 60^\circ\)[/tex].
Thus, the measure of [tex]\(\angle PQR\)[/tex] is:
[tex]\[ \boxed{60^{\circ}} \][/tex]
1. Formula for the area of a triangle using two sides and the included angle:
[tex]\[ \text{Area} = \frac{1}{2} \times PQ \times QR \times \sin(\angle PQR) \][/tex]
2. Substitute the given values into the formula:
[tex]\[ 28 \sqrt{3} = \frac{1}{2} \times 7 \, \text{cm} \times 16 \, \text{cm} \times \sin(\angle PQR) \][/tex]
3. Solve for [tex]\(\sin(\angle PQR)\)[/tex]:
[tex]\[ 28 \sqrt{3} = 56 \sin(\angle PQR) \][/tex]
[tex]\[ \sin(\angle PQR) = \frac{28 \sqrt{3}}{56} \][/tex]
[tex]\[ \sin(\angle PQR) = \frac{\sqrt{3}}{2} \][/tex]
4. Find the angle whose sine is [tex]\(\frac{\sqrt{3}}{2}\)[/tex]:
We know from trigonometric values that:
[tex]\[ \sin(60^\circ) = \frac{\sqrt{3}}{2} \][/tex]
Therefore, [tex]\(\angle PQR = 60^\circ\)[/tex].
Thus, the measure of [tex]\(\angle PQR\)[/tex] is:
[tex]\[ \boxed{60^{\circ}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.