Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine if it is possible to draw a triangle with angles [tex]\(150^\circ\)[/tex], [tex]\(20^\circ\)[/tex], and [tex]\(20^\circ\)[/tex], we need to check the sum of the angles in any triangle. A fundamental property of triangles is that the sum of their interior angles must be exactly [tex]\(180^\circ\)[/tex].
Let's add the given angles:
[tex]\[ 150^\circ + 20^\circ + 20^\circ = 190^\circ \][/tex]
The sum of these angles is [tex]\(190^\circ\)[/tex]. Since the sum of the angles in a triangle must be [tex]\(180^\circ\)[/tex], and in this case, it is [tex]\(190^\circ\)[/tex], it is not possible to draw a triangle with these given angles.
Therefore, a triangle with angles [tex]\(150^\circ\)[/tex], [tex]\(20^\circ\)[/tex], and [tex]\(20^\circ\)[/tex] cannot exist because the sum of the angles is not equal to [tex]\(180^\circ\)[/tex].
Let's add the given angles:
[tex]\[ 150^\circ + 20^\circ + 20^\circ = 190^\circ \][/tex]
The sum of these angles is [tex]\(190^\circ\)[/tex]. Since the sum of the angles in a triangle must be [tex]\(180^\circ\)[/tex], and in this case, it is [tex]\(190^\circ\)[/tex], it is not possible to draw a triangle with these given angles.
Therefore, a triangle with angles [tex]\(150^\circ\)[/tex], [tex]\(20^\circ\)[/tex], and [tex]\(20^\circ\)[/tex] cannot exist because the sum of the angles is not equal to [tex]\(180^\circ\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.