At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the system of equations:
[tex]\[ \begin{cases} 2x + y = 4 \\ x + y = -2 \end{cases} \][/tex]
we can use the method of elimination or substitution. Here, we will use the method of elimination.
### Step-by-Step Solution
1. Write down the system of equations:
[tex]\[ \begin{cases} 2x + y = 4 \quad \text{(1)} \\ x + y = -2 \quad \text{(2)} \end{cases} \][/tex]
2. Subtract Equation (2) from Equation (1):
[tex]\[ (2x + y) - (x + y) = 4 - (-2) \][/tex]
Simplify the left-hand side and the right-hand side:
[tex]\[ 2x + y - x - y = 4 + 2 \][/tex]
[tex]\[ x = 6 \][/tex]
Thus, we have found [tex]\( x = 6 \)[/tex].
3. Substitute [tex]\( x = 6 \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]. We will use Equation (2):
[tex]\[ x + y = -2 \][/tex]
Substitute [tex]\( x = 6 \)[/tex] into the equation:
[tex]\[ 6 + y = -2 \][/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ y = -2 - 6 \][/tex]
[tex]\[ y = -8 \][/tex]
4. Write the solution as an ordered pair:
The solution to the system of equations is:
[tex]\[ (x, y) = (6, -8) \][/tex]
### Verify the Solution
To ensure our solution is correct, we can substitute [tex]\( x = 6 \)[/tex] and [tex]\( y = -8 \)[/tex] back into the original equations.
- For Equation (1):
[tex]\[ 2x + y = 4 \][/tex]
Substitute [tex]\( x = 6 \)[/tex] and [tex]\( y = -8 \)[/tex]:
[tex]\[ 2(6) + (-8) = 4 \][/tex]
[tex]\[ 12 - 8 = 4 \][/tex]
[tex]\[ 4 = 4 \quad \text{(True)} \][/tex]
- For Equation (2):
[tex]\[ x + y = -2 \][/tex]
Substitute [tex]\( x = 6 \)[/tex] and [tex]\( y = -8 \)[/tex]:
[tex]\[ 6 + (-8) = -2 \][/tex]
[tex]\[ -2 = -2 \quad \text{(True)} \][/tex]
Both equations are satisfied with the solution [tex]\( (6, -8) \)[/tex]. Therefore, the solution is confirmed to be correct. The values are [tex]\( x = 6 \)[/tex] and [tex]\( y = -8 \)[/tex].
[tex]\[ \begin{cases} 2x + y = 4 \\ x + y = -2 \end{cases} \][/tex]
we can use the method of elimination or substitution. Here, we will use the method of elimination.
### Step-by-Step Solution
1. Write down the system of equations:
[tex]\[ \begin{cases} 2x + y = 4 \quad \text{(1)} \\ x + y = -2 \quad \text{(2)} \end{cases} \][/tex]
2. Subtract Equation (2) from Equation (1):
[tex]\[ (2x + y) - (x + y) = 4 - (-2) \][/tex]
Simplify the left-hand side and the right-hand side:
[tex]\[ 2x + y - x - y = 4 + 2 \][/tex]
[tex]\[ x = 6 \][/tex]
Thus, we have found [tex]\( x = 6 \)[/tex].
3. Substitute [tex]\( x = 6 \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]. We will use Equation (2):
[tex]\[ x + y = -2 \][/tex]
Substitute [tex]\( x = 6 \)[/tex] into the equation:
[tex]\[ 6 + y = -2 \][/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ y = -2 - 6 \][/tex]
[tex]\[ y = -8 \][/tex]
4. Write the solution as an ordered pair:
The solution to the system of equations is:
[tex]\[ (x, y) = (6, -8) \][/tex]
### Verify the Solution
To ensure our solution is correct, we can substitute [tex]\( x = 6 \)[/tex] and [tex]\( y = -8 \)[/tex] back into the original equations.
- For Equation (1):
[tex]\[ 2x + y = 4 \][/tex]
Substitute [tex]\( x = 6 \)[/tex] and [tex]\( y = -8 \)[/tex]:
[tex]\[ 2(6) + (-8) = 4 \][/tex]
[tex]\[ 12 - 8 = 4 \][/tex]
[tex]\[ 4 = 4 \quad \text{(True)} \][/tex]
- For Equation (2):
[tex]\[ x + y = -2 \][/tex]
Substitute [tex]\( x = 6 \)[/tex] and [tex]\( y = -8 \)[/tex]:
[tex]\[ 6 + (-8) = -2 \][/tex]
[tex]\[ -2 = -2 \quad \text{(True)} \][/tex]
Both equations are satisfied with the solution [tex]\( (6, -8) \)[/tex]. Therefore, the solution is confirmed to be correct. The values are [tex]\( x = 6 \)[/tex] and [tex]\( y = -8 \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.