At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's solve the problem step-by-step.
1. Given Information:
- The probability of player A winning the match is [tex]\(\frac{1}{3}\)[/tex].
2. Understanding Probabilities:
- In probability, the sum of the probabilities of all mutually exclusive outcomes must equal 1.
- For this problem, there are only two possible outcomes: either player A wins or player B wins.
3. Setting Up the Equation:
- Let [tex]\(P(A)\)[/tex] be the probability that player A wins the match.
- Let [tex]\(P(B)\)[/tex] be the probability that player B wins the match.
- According to the problem, [tex]\(P(A) = \frac{1}{3}\)[/tex].
4. Calculating the Probability for Player B:
- The sum of the probabilities for player A and player B winning is 1.
- Therefore, we can write the equation:
[tex]\[ P(A) + P(B) = 1 \][/tex]
- We substitute the value of [tex]\(P(A)\)[/tex] from the given information:
[tex]\[ \frac{1}{3} + P(B) = 1 \][/tex]
5. Solving for [tex]\(P(B)\)[/tex]:
- To find [tex]\(P(B)\)[/tex], we solve the equation for [tex]\(P(B)\)[/tex]:
[tex]\[ P(B) = 1 - \frac{1}{3} \][/tex]
6. Simplifying the Expression:
- Perform the subtraction:
[tex]\[ P(B) = \frac{3}{3} - \frac{1}{3} = \frac{2}{3} \][/tex]
7. Result:
- Therefore, the probability that player B wins the match is [tex]\(\frac{2}{3}\)[/tex].
So, the probability of winning the match by player B is [tex]\[\frac{2}{3}\][/tex] or approximately 0.6666666666666667.
1. Given Information:
- The probability of player A winning the match is [tex]\(\frac{1}{3}\)[/tex].
2. Understanding Probabilities:
- In probability, the sum of the probabilities of all mutually exclusive outcomes must equal 1.
- For this problem, there are only two possible outcomes: either player A wins or player B wins.
3. Setting Up the Equation:
- Let [tex]\(P(A)\)[/tex] be the probability that player A wins the match.
- Let [tex]\(P(B)\)[/tex] be the probability that player B wins the match.
- According to the problem, [tex]\(P(A) = \frac{1}{3}\)[/tex].
4. Calculating the Probability for Player B:
- The sum of the probabilities for player A and player B winning is 1.
- Therefore, we can write the equation:
[tex]\[ P(A) + P(B) = 1 \][/tex]
- We substitute the value of [tex]\(P(A)\)[/tex] from the given information:
[tex]\[ \frac{1}{3} + P(B) = 1 \][/tex]
5. Solving for [tex]\(P(B)\)[/tex]:
- To find [tex]\(P(B)\)[/tex], we solve the equation for [tex]\(P(B)\)[/tex]:
[tex]\[ P(B) = 1 - \frac{1}{3} \][/tex]
6. Simplifying the Expression:
- Perform the subtraction:
[tex]\[ P(B) = \frac{3}{3} - \frac{1}{3} = \frac{2}{3} \][/tex]
7. Result:
- Therefore, the probability that player B wins the match is [tex]\(\frac{2}{3}\)[/tex].
So, the probability of winning the match by player B is [tex]\[\frac{2}{3}\][/tex] or approximately 0.6666666666666667.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.