Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's solve the problem step-by-step.
1. Given Information:
- The probability of player A winning the match is [tex]\(\frac{1}{3}\)[/tex].
2. Understanding Probabilities:
- In probability, the sum of the probabilities of all mutually exclusive outcomes must equal 1.
- For this problem, there are only two possible outcomes: either player A wins or player B wins.
3. Setting Up the Equation:
- Let [tex]\(P(A)\)[/tex] be the probability that player A wins the match.
- Let [tex]\(P(B)\)[/tex] be the probability that player B wins the match.
- According to the problem, [tex]\(P(A) = \frac{1}{3}\)[/tex].
4. Calculating the Probability for Player B:
- The sum of the probabilities for player A and player B winning is 1.
- Therefore, we can write the equation:
[tex]\[ P(A) + P(B) = 1 \][/tex]
- We substitute the value of [tex]\(P(A)\)[/tex] from the given information:
[tex]\[ \frac{1}{3} + P(B) = 1 \][/tex]
5. Solving for [tex]\(P(B)\)[/tex]:
- To find [tex]\(P(B)\)[/tex], we solve the equation for [tex]\(P(B)\)[/tex]:
[tex]\[ P(B) = 1 - \frac{1}{3} \][/tex]
6. Simplifying the Expression:
- Perform the subtraction:
[tex]\[ P(B) = \frac{3}{3} - \frac{1}{3} = \frac{2}{3} \][/tex]
7. Result:
- Therefore, the probability that player B wins the match is [tex]\(\frac{2}{3}\)[/tex].
So, the probability of winning the match by player B is [tex]\[\frac{2}{3}\][/tex] or approximately 0.6666666666666667.
1. Given Information:
- The probability of player A winning the match is [tex]\(\frac{1}{3}\)[/tex].
2. Understanding Probabilities:
- In probability, the sum of the probabilities of all mutually exclusive outcomes must equal 1.
- For this problem, there are only two possible outcomes: either player A wins or player B wins.
3. Setting Up the Equation:
- Let [tex]\(P(A)\)[/tex] be the probability that player A wins the match.
- Let [tex]\(P(B)\)[/tex] be the probability that player B wins the match.
- According to the problem, [tex]\(P(A) = \frac{1}{3}\)[/tex].
4. Calculating the Probability for Player B:
- The sum of the probabilities for player A and player B winning is 1.
- Therefore, we can write the equation:
[tex]\[ P(A) + P(B) = 1 \][/tex]
- We substitute the value of [tex]\(P(A)\)[/tex] from the given information:
[tex]\[ \frac{1}{3} + P(B) = 1 \][/tex]
5. Solving for [tex]\(P(B)\)[/tex]:
- To find [tex]\(P(B)\)[/tex], we solve the equation for [tex]\(P(B)\)[/tex]:
[tex]\[ P(B) = 1 - \frac{1}{3} \][/tex]
6. Simplifying the Expression:
- Perform the subtraction:
[tex]\[ P(B) = \frac{3}{3} - \frac{1}{3} = \frac{2}{3} \][/tex]
7. Result:
- Therefore, the probability that player B wins the match is [tex]\(\frac{2}{3}\)[/tex].
So, the probability of winning the match by player B is [tex]\[\frac{2}{3}\][/tex] or approximately 0.6666666666666667.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.