Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the inequality [tex]\( 4 - x < 2x - 5 \)[/tex], follow these steps:
1. Isolate the variable [tex]\( x \)[/tex] on one side of the inequality:
Start by eliminating [tex]\( x \)[/tex] from the left side. To do this, add [tex]\( x \)[/tex] to both sides of the inequality:
[tex]\[ 4 - x + x < 2x - 5 + x \][/tex]
Simplifying this, we get:
[tex]\[ 4 < 3x - 5 \][/tex]
2. Isolate the constant term on one side:
Next, we need to eliminate the constant term on the right side. Add 5 to both sides of the inequality to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 4 + 5 < 3x - 5 + 5 \][/tex]
Simplifying this, we get:
[tex]\[ 9 < 3x \][/tex]
3. Solve for [tex]\( x \)[/tex]:
To isolate [tex]\( x \)[/tex], divide both sides of the inequality by 3:
[tex]\[ \frac{9}{3} < \frac{3x}{3} \][/tex]
Simplifying this, we get:
[tex]\[ 3 < x \][/tex]
4. Express the solution:
We have now found that [tex]\( x \)[/tex] must be greater than 3. In interval notation, this is written as:
[tex]\[ x \in (3, \infty) \][/tex]
Thus, the solution to the inequality [tex]\( 4 - x < 2x - 5 \)[/tex] is:
[tex]\[ (3 < x) \text{ or } x \in (3, \infty). \][/tex]
1. Isolate the variable [tex]\( x \)[/tex] on one side of the inequality:
Start by eliminating [tex]\( x \)[/tex] from the left side. To do this, add [tex]\( x \)[/tex] to both sides of the inequality:
[tex]\[ 4 - x + x < 2x - 5 + x \][/tex]
Simplifying this, we get:
[tex]\[ 4 < 3x - 5 \][/tex]
2. Isolate the constant term on one side:
Next, we need to eliminate the constant term on the right side. Add 5 to both sides of the inequality to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 4 + 5 < 3x - 5 + 5 \][/tex]
Simplifying this, we get:
[tex]\[ 9 < 3x \][/tex]
3. Solve for [tex]\( x \)[/tex]:
To isolate [tex]\( x \)[/tex], divide both sides of the inequality by 3:
[tex]\[ \frac{9}{3} < \frac{3x}{3} \][/tex]
Simplifying this, we get:
[tex]\[ 3 < x \][/tex]
4. Express the solution:
We have now found that [tex]\( x \)[/tex] must be greater than 3. In interval notation, this is written as:
[tex]\[ x \in (3, \infty) \][/tex]
Thus, the solution to the inequality [tex]\( 4 - x < 2x - 5 \)[/tex] is:
[tex]\[ (3 < x) \text{ or } x \in (3, \infty). \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.